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What do you hope to take away from
this session?



Why should we care about Uncertainty
in Computer Vision?
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Example: Uncertainty in Monocular Depth Estimation



Example: Uncertainty in Semantic Segmentation



Review of Uncertainty in Deep Learning



Why do we need to care about Uncertainty in Computer Vision?

• Ambiguity in the task

• Ambiguity in our models
• Downstream decision making

• Safe
• Robust
• Transparent

• Improved performance

• Data efficiency
• Self-supervision

• Evaluation and Model Selection!!
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What if we use a probabilistic approach?
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What if we use a probabilistic approach?



Dangers of avoiding probabilistic approaches…

What if we use a probabilistic approach?



We need to consider the properties of
our Computer Vision and Machine
Learning models/approaches..



No Free Lunch



Overview…

Motivation

No Free Lunch

Whirlwind Introduction to Inverse Probabilities

Model Selection

Evaluation

Bayesian Machine Learning: Simple Example

Why don’t we do Model Selection in Vision?

Illustrative Examples of Uncertainty in Vision

Illustration: Structured Uncertainty Prediction Networks (SUPN)

Conclusions
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Ambiguity..
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Average vs Worst Case..
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Average vs Worst Case: Failure to model..
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Average vs Worst Case: Explicitly accounting for imbalance..

0.0 0.2 0.4 0.6 0.8 1.0
Input Data x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 D

at
a 

y

Data Class 1
Data Class 2
Estimated Function 1
Estimated Function 2



Story of Machine Learning
(in three slides!)



Story of ML: Past…
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Story of ML: Present…
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Story of ML: Future…

0.0 0.2 0.4 0.6 0.8 1.0
Input Data x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ou
tp

ut
 D

at
a 

y

Data Class 1
Data Class 2
Estimated Function 1
Function 1 Error
Estimated Function 2
Function 2 Error



No free lunch

Data As
su

m
pt

io
ns

 / 
Co

ns
tra

in
ts

 / 
Pr

io
r K

no
wl

ed
ge

 



No free lunch

Ou
tp

ut
 In

te
rp

re
ta

bl
e 

/ E
xp

la
in

ab
le

 

Data As
su

m
pt

io
ns

 / 
Co

ns
tra

in
ts

 / 
Pr

io
r K

no
wl

ed
ge

 



No free lunch

Ou
tp

ut
 In

te
rp

re
ta

bl
e 

/ E
xp

la
in

ab
le

 

Data As
su

m
pt

io
ns

 / 
Co

ns
tra

in
ts

 / 
Pr

io
r K

no
wl

ed
ge

 



No free lunch (more realistic)
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Why are we going to look at Bayesian methods?

“The Theory of probability is simply common sense reduced to calculus”
Pierre-Simon Laplace, 1749-1827

• We use Machine Learning to deal with the unknown
• Bayesian probability is the application of logic in the face of uncertainty

• Vision applications usually care about Inverse Probability
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Whirlwind Introduction to Inverse
Probabilities
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Monty Hall: Think of a tree diagram…
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Monty Hall: How would we generate data (or simulate)?

1 door_with_car = pick_random({1, 2, 3})
2 door_with_goat = {1, 2, 3} - door_with_car
3
4 door_picked = pick_random({1, 2, 3})
5
6 if door_picked == door_with_car:
7 door_to_open = pick_random(door_with_goat)
8 else:
9 door_to_open = door_with_goat - door_picked
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Monty Hall: How would we generate data (or simulate)?

1 door_with_car = pick_random({1, 2, 3}) # 1/3 equal chance
2 door_with_goat = {1, 2, 3} - door_with_car
3
4 door_picked = pick_random({1, 2, 3}) # 1/3 equal chance
5
6 if door_picked == door_with_car:
7 door_to_open = pick_random(door_with_goat) # 1 times in 3
8 else:
9 door_to_open = door_with_goat - door_picked # 2 times in 3



Consider Modelling as a Generative
Process



The Rules of Probability

• Notation p(a) = p(a = A) where a is a particular outcome chosen from the set of all
possible outcomes A

p(A | B) means “probability of A being the case given that B occurs”

• Probabilities in the range 0 → 1
• 0 = impossible
• 1 = certain
• Sum over all possible outcomes must be 1



The Rules of Probability

The Sum Rule (Marginalisation)

p(A = a) =
∑
b∈B

p(A = a, B = b)

• If continuous, rather than discrete, use densities and

p(A = a) =
∫
R

p(A = a, B = b) db

The Product Rule

p(A = a, B = b) = p(A = a | B = b) p(B = b) = p(B = b | A = a) p(A = a)

• Bayes’ rule follows from these rules..
• Only consistent approach for probability as “degree of plausibility” (Cox)



Bayes’ Rule

• From the product rule

p(A = a | B = b) = p(B = b | A = a) p(A = a)
p(B = b)

• We can also condition on other information H

p(a | b, H) = p(b | a, H) p(a | H)
p(b | H)

• We give the parts of equation specific terms

Posterior = Likelihood × Prior
Evidence



Bayes’ Rule

Posterior Probability (after) = Likelihood (of event) × Prior Probability (before)
Evidence



Example of Bayes’ Rule..

• Consider a legal trial..

p(guilt | observations)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(observations | guilt) ×

Prior︷ ︸︸ ︷
p(guilt)

p(observations)︸ ︷︷ ︸
Evidence

• The evidence is the sum of the top row over both the guilty (guilt = 1) and innocent
(guilt = 0) cases.

• We might want to be careful about how we treat p(guilt).

• Consider that the jury has to return a verdict “beyond all reasonable doubt”..
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Bayes’ Rule with models and functions..

p(functions | observed data)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(observed data | functions) ×

Prior︷ ︸︸ ︷
p(functions)

p(observed data)︸ ︷︷ ︸
Evidence

p(f | D)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(D | f) ×

Prior︷︸︸︷
p(f)

p(D)︸ ︷︷ ︸
Evidence

p(D) =
∑

f

p(D | f) p(f)

Data D = {X, Y }, pairs of inputs {xn} and outputs {yn}, and functions f

Average over functions to predict unknown output y∗ for a new input x∗:

p(y∗ | x∗, D) =
∑

f

p(y∗ | x∗, f) p(f | D)
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Prior over functions…
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Combine prior with data…

0.0 0.2 0.4 0.6 0.8 1.0
Input Data x

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ou

tp
ut

 D
at

a 
y



Combine prior with data…

0.0 0.2 0.4 0.6 0.8 1.0
Input Data x

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Ou

tp
ut

 D
at

a 
y



Combine prior with data…
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Average over functions to predict…
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Averaging over functions gives us (Epistemic) Uncertainty!
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Bayes’ Rule with models and parameters..

p(params | obs. data)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(obs. data | params) ×

Prior︷ ︸︸ ︷
p(params)

p(obs. data)︸ ︷︷ ︸
Evidence

p(w | D)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(D | w) ×

Prior︷ ︸︸ ︷
p(w)

p(D)︸ ︷︷ ︸
Evidence

Data D = X, Y , pairs of inputs xn and outputs yn

Prediction of output y∗ for a new input x∗:

p(y∗ | x∗, D) =
∑
w

p(y∗ | x∗, w) p(w | D)
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New thought process; no longer “Find
the best parameters”, now “Find all the
parameters that agree with the data”..
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• Might not be the right question..
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to be true via data

we can only demonstrate that things
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Stable Diffusion: “Drop cannonball and
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Bayes’ Rule for model selection..
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Evidence

Data D = {X, Y }, input/output pairs, and parameters w



Bayes’ Rule for model selection..

p(w | D, M = m)︸ ︷︷ ︸
Posterior under model

=

Likelihood under model︷ ︸︸ ︷
p(D | w, M = m) ×

Prior︷ ︸︸ ︷
p(w, M = m)

p(D | M = m)︸ ︷︷ ︸
Evidence for model
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If prior over models is equal, we compare via the Evidence for the Model: p(D | M = m)



Model selection example

Fitting polynomial models to data under Gaussian noise, εn ∼ N (0, σ2):

Model 1 : yn = a0 + a1xn + εn

Model 2 : yn = a0 + a1xn + a2x2 + εn

Model 3 : yn = a0 + a1xn + a2x2 + a3x3 + εn

Model 4 : yn = a0 + a1xn + a2x2 + a3x3 + a4x4 + εn

Model 5 : yn = a0 + a1xn + a2x2 + a3x3 + a4x4 + a5x5 + εn

Parameters wm = [a0, . . . , am] for model m, where m ∈ [1, . . . , 5].



Model selection example



Model selection example (more noise)
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Evaluation in Computer Vision

We have made a cool new model with great advances..

• How do we evaluate empirical performance?
• What do we care about?

We probably want:

• Fair comparisons (comparing methods)
• Useful comparisons (what can we learn)
• Understand limitations (how confident should we be)

• How can we make it better if we don’t know where it fails?!
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Illustrative example: Which method is best?

• We are showing the Root of the Mean Squared Error
• We want lower scores so the MD2 model is the best?
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Evaluation: Noise, Bias and Variance

yn = f(xn; ϕ) + εn, n = 1 . . . N, εn ∼ N (0, σ2)

y(x) = f(x; ϕ) + ε

µ(x) = Ey[ y(x) ] =
∫

y(x) p(y | x) dy

Now consider a least squares (L2) loss function:

L(x, ϕ) =
(
f(x; ϕ) − y(x)
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f(x; ϕ) − µ(x)
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Evaluation: Noise, Bias and Variance

Ey[ L(x, ϕ) ] =
(
f(x; ϕ) − µ(x)

)2 + σ2︸︷︷︸
noise

We have partitioned the expected loss into two terms, the second is some irreducible noise
that comes with the observations (e.g. sensor noise).

So far we have ignored the fact that we actually estimate parameters from a sampled
dataset D = {xn, yn}N

n=1

fµ(x) := ED
[
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Evaluation: Noise, Bias and Variance

Therefore, if we take expectations over datasets, our expected loss comprises three terms:

ED[Ey[ L(x, ϕ) ] ] = ED
[ (

f(x; ϕD) − fµ(x)
)2 ]

︸ ︷︷ ︸
variance

+
(
fµ(x) − µ(x)

)2︸ ︷︷ ︸
bias

+ σ2︸︷︷︸
noise

Note: more complex for models other than least squares…

Noise Error in measurements (e.g. sensor noise, missing data, data mislabelled, …)

Bias Systematic deviation from the true mean of the function (e.g. due to limitations of our model, …)

Variance Uncertainty in the fitting of our model due to limitations of the dataset (e.g. too few samples, dataset
doesn’t span the distribution, …)
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Evaluation: Noise, Bias and Variance

ED[Ey[ L(x, ϕ) ] ] = ED
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Evaluation: Overfitting



Evaluation: Bias-Variance tradeoff



Evaluation: Statistical Significance..

• If you have some statistics training you may be familiar with the concept of statistical
significance

• At high-level, this concerns the overlapping of (error) distributions and whether you
could distinguish reliably between two distributions

• It is possible to conduct formal tests…

• My Advice: try to avoid this as it is prone to all kinds of subtle decisions and
arguments. Better to show the raw data in a useful form and people can perform their
own assessment…
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Evaluation: Example with statistical tests..



Evaluation: Look at test error distributions (e.g. histograms..)
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Evaluation: Alignments example with error bars..
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Evaluation: Example with histograms (e.g. violin plots)..



Evaluation: Histograms with illustrations!
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Bayesian Machine Learning: Simple Example

Switch to demo notebook..



Why don’t we do Model Selection in
Vision?
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Why don’t we do Model Selection in Vision?

• History?
• Ablation Studies?
• Philosphical / Paradigm?

• It’s difficult to do!
• Integrals are often difficult or considered expensive

• Sometimes this is true, sometimes you can be clever/approximate

In era of empirical computer vision, how you
evaluate is really important!
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Illustrative (practical) examples of uncertainty in vision

• Bayesian Deep Learning (BDL)

• Ensemble (deep) Approaches

• Structured Approximations



Uncertainty in vision: Bayesian Deep Learning



Uncertainty in vision: Deep ensembles



Uncertainty in vision: Deep ensembles



Uncertainty in vision: Structured approximation



Illustration: Structured Uncertainty
Prediction Networks (SUPN)
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Generative model zoo

x Encoder z Generator x

VAE z Generator x′

x

Classifier c

GAN

ε
f0(·)

f−1
0 (·)

z1 · · · zK

fK(·)

f−1
K (·)

x

Normalising Flow

ε · · · z(t) f
(
t, z(t)

)
z(t′) · · · x

Diffusion/Score



Unreasonable expectations of generative models?

x

z θϕ

e.g. VAE with:

z ∈ RM ,

x ∈ [0, 1]3×N×N

Figure 1: How many degrees of freedom are there in the image?



“VAEs produce overly smooth output”
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Statistics don’t match

, Σfull(z)︸ ︷︷ ︸
Sample

Statistics match!!

−

Residual

Structure in
residual captured
by covariance

[Dorta et al. 2018]
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Problem! Dense covariance O(N2)…

• Problem: Σfull(z) is quadratic in the number of pixels

• Solution: Sparse parameterisation of the Cholesky factor of the precision

Σ(z) :=
[
Λ(z)

]−1 :=
[
LΛ(z) L⊤

Λ(z)
]−1

Neighbourhood
in image domain

Sparsity in the
precision Cholesky

matrix LΛ

Sparsity in the
precision matrix
Λ(z) := Σ−1(z)
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Efficient implementation

• Sparse parameterisation of the Cholesky factor of the precision

Σ(z) :=
[
Λ(z)

]−1 :=
[
LΛ(z) L⊤

Λ(z)
]−1

Figure 2: Implementation through convolutional structure: matrix-vector product in O(N)



Examples of samples

Figure 3: Variation in samples from the model on test data



Introspection of the captured covariance structure

Figure 4: Visualisation of the learned correlations



Links to established concepts…

• Links to Conditional Random Field (CRF) models
• a Gaussian CRF - e.g. “Regression Tree Fields” [Jancsary et al. 2012]

• Links to adaptive local regularisation models
• e.g. locally adaptive TV or Laplacian based methods

• Links to Wavelet approaches
• considering hierarchical extensions or combining fixed basis functions

• Things to be careful about
• priors on sparse precision (consider Cholesky structure)
• need to bound terms
• lots to say about these things…
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Testing with denoising…

Figure 5: Denoising example using SUPN (vs a denoising autoencoder). The SUPN model has only
been trained as in a generative manner (i.e. as a prior).



Testing with denoising…

Figure 6: Comparison to denoising autoencoder



SUPN as a prior for inverse problems

• Consider a hierarchical model for the inverse problem

p(x, z |y) ∝ p(y |x) pG(x |z) pZ(z)

• We will take a MAP estimate for z rather than marginalising :-(

• From before (with a Gaussian observation likelihood) and pZ(z) ∼ N (0, I)

D(y, A x) := 1
2σ2 ∥A x − y∥2

2

R(x) := min
z∈Z

log |Σθ(z)| + 1
2

∥∥x − µθ(z)
∥∥2

Σθ(z) + 1
2

∥z∥2
2

• Where the Generator provides N
(
x |µθ(z), Σθ(z)

)
via a network [µ, LΛ] = f(z; θ)

and ∥a∥2
Σ := a⊤ Σ−1 a denotes a Gaussian weighted norm

• Note: the network still outputs O(N) values and evaluation of R(x) can be
performed in O(N) time using LΛ for the first two terms
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Aside: Images and manifolds

Figure 7: The range of the generator



Aside: Images and manifolds

Figure 8: The range of the generator



Aside: Images and manifolds

Figure 9: Independence away from the generator



Aside: Images and manifolds

Figure 10: Structured departure from the generator



Aside: Images and manifolds

Figure 11: Structured departure from the generator



FastMRI knee learned prior covariance…(introspection!)

Real (top) and complex (bottom) channels of the learned prior.

Left to right: True Image, Mean, Prior Residual Sample, Pixelwise Correlations



Compressed sensing reconstruction results
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Comparison vs supervised reconstruction method

Figure 12: Comparison with the supervised variational networks [Hammernik et al. 2018]. The
vertical lines depict the experimental settings the variational networks were trained on.



Reconstruction uncertainty: samples



Conclusions
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Conclusions

• Hopefully motivated the need for uncertainty in vision (?)

• These techniques are important!

• Make vision safe, trustworthy and robust for applications

• Rigour in experimental validation

• There is still much work do be done here!







4th Workshop on Uncertainty in Vision (at CVPR)

https://uncertainty-cv.github.io/2025/



Important slide acknowledgements!

Illustrations taken from the excellent new text book from Simon Prince:

Understanding Deep Learning, Simon J.D. Prince, MIT Press

Final draft available on the website:

https://udlbook.github.io/udlbook/



Further Reading

• Understanding Deep Learning, Simon J.D. Prince
• https://udlbook.github.io/udlbook/

• Information Theory, Inference, and Learning Algorithms, David MacKay
• https://www.inference.org.uk/itprnn/book.html

• Pattern Recognition and Machine Learning, Christopher M. Bishop
• Microsoft Website with PDF

• Computer Vision: Models, Learning, and Inference, Simon J.D. Prince
• http://www.computervisionmodels.com/

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/


That’s all folks..
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