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What do you hope to take away from
this session?



Why should we care about Uncertainty
In Computer Vision?



Why do we need to care about Uncertainty in Computer Vision?
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Example: Uncertainty in NERF

Stochastic Neural Radiance Fields:
Quantifying Uncertainty in Implicit 3D Representations

Jianxiong Shen, Adria Ruiz, Antonio Agudo, Francesc Moreno-Noguer
Institut de Robotica i Informatica Industrial, CSIC-UPC, Barcelona, Spain
jianxiong.shen@upc.edu
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Figure 1. Illustration of the results obtained by Stochastic Neural Radi Fields (S-NeRF). Our method is a probabilistic general-
ization of the original NeRF, which is able to not only address tasks such as novel-view generation (Rendered novel view) or depth-map
estimation (Depth), but also quantify the uncertainty (red color) associated with the model outputs. This is specially important in domains
such as robotics, where this information is necessary to evaluate the risk associated with decisions based on the model estimations.




Example: Uncertainty in NERF
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Example: Uncertainty in NERF
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Example: Uncertainty in Monocular Depth Estimation

On the uncertainty of self-supervised lar depth esti
Matteo Poggi Filippo Aleotti Fabio Tosi Stefano Mattoccia

Department of Computer Science and Engineering (DISI)
University of Bologna, Italy

{m.poggi, filippo.aleotti2, fabio.tosi5, stefano.mattoccia }@unibo.it

Abstract

Self-supervised paradigms for monocular depth estima-
tion are very appealing since they do not require ground
truth annotations at all. Despite the astonishing results
yielded by such methodologies, learning to reason about the

inty of the estimated depth maps is of im-
portance for practical applications, yet uncharted in the lit-
erature. Purposely, we explore for the first time how to esti-
mate the uncertainty for this task and how this affects depth
accuracy, proposing a novel peculiar technique specifically
designed for self-supervised approaches. On the standard
KITTI dataset, we exhaustively assess the performance of
each method with different self-supervised paradigms. Such
evaluation highlights that our proposal i) always improves
depth accuracy significantly and ii) yields state-of-the-art
results concerning uncertainty estimation when training
on sequences and competitive results uniquely deploying
stereo pairs.

High

Figure 1. How much can we trust self-supervised monocular
depth estimation? From a single input image (top) we estimate
depth (middle) and uncertainty (bottom) maps. Best with colors.



Example: Uncertainty in Semantic Segmentation

Efficient Uncertainty Estimation for Semantic
Segmentation in Videos

Po-Yu Huang!, Wan-Ting Hsu!, Chun-Yueh Chiu!, Ting-Fan Wu?, Min Sun?
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A Review of Uncertainty Quantification in Deep
Learning: Techniques, Applications and
Challenges

Moloud Abdar*, Farhad Pourpanah, Member, IEEE, Sadiq Hussain, Dana Rezazadegan, Li Liu, Senior
Member, IEEE, Mohammad Ghavamzadeh, Paul Fieguth, Senior Member, IEEE, Xiaochun Cao, Senior
Member, IEEE, Abbas Khosravi, Senior Member, IEEE, U Rajendra Acharya, Senior Member, IEEE,
Vladimir Makarenkov and Saeid Nahavandi, Fellow, IEEE

Abstract—Uncertainty quantification (UQ) plays a pivotal role in the reduction of uncertainties during both optimization and decision
making, applied to solve a variety of real-world applications in science and engineering. Bayesian approximation and ensemble
learning techniques are two of the most widely-used UQ methods in the literature. In this regard, researchers have proposed different
UQ methods and examined their performance in a variety of applications such as computer vision (e.g., self-driving cars and object
detection), image processing (e.g., image restoration), medical image analysis (e.g., medical image classification and segmentation),
natural language processing (e.g., text classification, social media texts and recidivism risk-scoring), bioinformatics, etc. This study
reviews recent advances in UQ methods used in deep learning, investigates the application of these methods in reinforcement
learning, and highlight the fundamental research challenges and directions associated with the UQ field.
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Why do we need to care about Uncertainty in Computer Vision?

- Ambiguity in the task
- Ambiguity in our models Lighting

- Downstream decision making
- Safe
- Robust
- Transparent

- Improved performance x
- Data efficiency %
- Self-supervision

- Evaluation and Model Selection!!

Viewpoint



Dangers of avoiding probabilistic approaches...
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OUTPUT

Test loss 0,002
_ Training loss 0.001

Colors shows
data, neuron and

weight values. !
[ Show testdata ] Discretize output




Dangers of avoiding probabilistic approaches...
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Dangers of avoiding probabilistic approaches...

What if we use a probabilistic approach?



Dangers of avoiding probabilistic approaches...

What if we use a probabilistic approach?

Test 0 Output (LB = -17.34130392586988) Test 1 Output (LB = -3! 7984) Test 2 Output (LB = -51.29994757854338)
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Dangers of avoiding probabilistic approaches...

What if we use a probabilistic approach?

Test 0 Output (LB = -17.34130392586988) Test 1 Output (LB = -35, 984) Test 2 Output (LB = -51.29994757854338)
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We need to consider the properties of
our Computer Vision and Machine
Learning models/approaches..



No Free Lunch




Motivation

No Free Lunch

Whirlwind Introduction to Inverse Probabilities

Model Selection

Evaluation

Bayesian Machine Learning: Simple Example

Why don't we do Model Selection in Vision?

Illustrative Examples of Uncertainty in Vision

Illustration: Structured Uncertainty Prediction Networks (SUPN)

Conclusions






1.5

1.0

T T
N o
0 O

A e1eq 1ndinp

-0.5 1

-1.0 4

-1.5

1.0

0.8

0.6

0.4

0.2

0.0

Input Data x



What happens between the dots?
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Output Data y
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What happens between the dots?
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Output Data y
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Ambiguity..
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Ambiguity..
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Average vs Worst Case: Explicitly accounting for imbalance..
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Story of Machine Learning

(in three slides!)
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Story of ML: Future...
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Why are we going to look at Bayesian methods?

“The Theory of probability is simply common sense reduced to calculus”
Pierre-Simon Laplace, 1749-1827

- We use Machine Learning to deal with the unknown
- Bayesian probability is the application of logic in the face of uncertainty



Why are we going to look at Bayesian methods?

“The Theory of probability is simply common sense reduced to calculus”
Pierre-Simon Laplace, 1749-1827

- We use Machine Learning to deal with the unknown
- Bayesian probability is the application of logic in the face of uncertainty

- Vision applications usually care about Inverse Probability



Whirlwind Introduction to Inverse
Probabilities




Overview...

Whirlwind Introduction to Inverse Probabilities
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Monty Hall: Think of a tree diagram...

Pick Correct Door A

Pick Wrong Door B

Pick Wrong Door C




Monty Hall: Think of a tree diagram...
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No choice!

Free choice No choice!



Monty Hall: Think of a tree diagram...

Pick Correct Door A

Pick Wrong Door B

Pick Wrong Door C'
|
3 % 0o 1 (:) 1
Open B Open C Open A Open C Open A Open B
Free choice No choice! No choice!
1 1 _ 1111, 1_1 1. 0_0f|1,1_2 1, 0_0f |1 1_2
3'276||3°2" % 3'1T76||3°"1T° 6 3'176||3°27 6
Stay=g+i+o+2=3 Switch=2 + 2 = 2




Monty Hall: How would we generate data (or simulate)?



Monty Hall: How would we generate data (or simulate)?

door with car = pick_random({1, 2, 3})
door_with_goat = {1, 2, 3} - door_with_car

door_picked = pick_random({1, 2, 3})

g W N

6 if door_picked == door_with_car:

door_to_open = pick_random(door with goat)
else:
9 door_to_open = door_with_goat - door_picked

e}



Monty Hall: How would we generate data (or simulate)?

1 door_with car = pick_random({1, 2, 3}) # 1/3 equal chance
2 door_with_goat = {1, 2, 3} - door_with_car
3
4 door_picked = pick_random({1, 2, 3}) # 1/3 equal chance
5
6 if door_picked == door_with_car:
door_to_open = pick_random(door with goat) # 1 times in 3
3 else:

9 door_to_open = door_with_goat - door_picked # 2 times in 3



Consider Modelling as a Generative
Process



The Rules of Probability

- Notation p(a) = p(a = A) where a is a particular outcome chosen from the set of all

possible outcomes A

p(A| B) means “probability of A being the case given that B occurs”

- Probabilities in the range 0 — 1

- 0 = impossible

- 1 = certain

- Sum over all possible outcomes must be 1



The Rules of Probability

The Sum Rule (Marginalisation)

p(A=a) :Zp(A:a,B:b)
beB

- If continuous, rather than discrete, use densities and
MA:@:/MA:WB:M%
R
The Product Rule

p(A=a,B=b)=p(A=a|[B=b)pB=>b)=p(B=>b|A=a)p(A=a)

- Bayes' rule follows from these rules..
- Only consistent approach for probability as “degree of plausibility” (Cox)



Bayes’ Rule

- From the product rule

pAza|B=p=PB=blA=a)p(A=0)

p(B=0b)
+ We can also condition on other information H

p(b]a,H)pla|H)
p(b | H)

pla|b,H) =

- We give the parts of equation specific terms

Likelihood x Prior

Posterior = -
Evidence




Bayes’ Rule

Likelihood (of event) x Prior Probability (before)

Posterior Probability (after) = -
y( ) Evidence




Example of Bayes’ Rule..

- Consider a legal trial..

Likelihood Prior

——
p(observations | guilt) x p(guilt)

p(guilt | observations) =

p(observations)
| S —

Posterior
Evidence



Example of Bayes’ Rule..

- Consider a legal trial..

Likelihood Prior

——
p(observations | guilt) x p(guilt)

> " p(observations | guilt) p(guilt)
guilt

p(suilt | observations) =

Posterior

Evidence

- The evidence is the sum of the top row over both the guilty (guilt = 1) and innocent
(guilt = 0) cases.
- We might want to be careful about how we treat p(guilt).
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Example of Bayes’ Rule..

- Consider a legal trial..

Likelihood Prior

——
p(observations | guilt) x p(guilt)

> " p(observations | guilt) p(guilt)
guilt

p(suilt | observations) =

Posterior

Evidence

- The evidence is the sum of the top row over both the guilty (guilt = 1) and innocent
(guilt = 0) cases.

- We might want to be careful about how we treat p(guilt).
- Consider that the jury has to return a verdict “beyond all reasonable doubt”..



Bayes’ Rule with models and functions..

Likelihood Prior

observed data | functions) x p(functions
p(functions | observed data) = o | ) xp( )

p(observed data)

Posterior -
Evidence



Bayes’ Rule with models and functions..

Likelihood

p(functions | observed data) =

p(observed data | functions) x p(functions)

p(observed data)

Posterior
Evidence

Likelihood Prior

(D] f)xp(f)

p
p(f|D)=——"—— pD)=) pD|f)p
(417) D) @)= p@ 112
Posterior N~

Evidence

Data D = {X, Y}, pairs of inputs {x,,} and outputs {y,}, and functions f



Bayes’ Rule with models and functions..

Likelihood Prior

observed data | functions) x p(functions
p(functions | observed data) = o | ) xp( )

p(observed data)

Posterior -
Evidence

Likelihood Prior

p(f | D) = PPLD X)) S~ up | ) p()
f

Posterior N~
Evidence

Data D = {X, Y}, pairs of inputs {x,,} and outputs {y,}, and functions f

Average over functions to predict unknown output 3~ for a new input x*:

p(y* |z, D) = Zp | 2%, f)p(f | D)



Prior over functions...
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Combine prior with data...
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Combine prior with data...

Output Data y
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Output Data y

Combine prior with data...
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Average over functions to predict...
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Averaging over functions gives us (Epistemic) Uncertainty!
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Bayes’ Rule with models and parameters..

Likelihood Prior

p(obs. data | params) x p(params)

p(params | obs. data) =

p(obs. data)

Posterior N——
Evidence



Bayes’ Rule with models and parameters..

Likelihood Prior

p(obs. data | params) x p(params)

p(params | obs. data) =

p(obs. data)

Posterior N——
Evidence

Likelihood Prior
——
p(D | w) x p(w)

plw | D) =
L,’_)/ p(D)
Posterior S—~—

Evidence

Data D = XY, pairs of inputs x,, and outputs y,



Bayes’ Rule with models and parameters..

Likelihood Prior

p(obs. data | params) x p(params)

p(params | obs. data) =

p(obs. data)

Posterior N——
Evidence

Likelihood Prior

——
p(D | w) x p(w)

p(w | _D) =D p(D) = ;p(D | w) p(w)
Posterior S~

Evidence

Data D = XY, pairs of inputs x,, and outputs y,

Prediction of output * for a new input z*:

ply" |2, D) = ZP | 2%, w)p(w | D)



New thought process; no longer “Find
the best parameters”, now “Find all the
parameters that agree with the data”..



Model Selection
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No Free Lunch

Whirlwind Introduction to Inverse Probabilities

Model Selection
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Bayesian Machine Learning: Simple Example

Why don't we do Model Selection in Vision?

Illustrative Examples of Uncertainty in Vision

Illustration: Structured Uncertainty Prediction Networks (SUPN)

Conclusions
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- How much data do we need?

- Might not be the right question..
- What can we actually say?
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- How much data do we need?

- Might not be the right question..
- What can we actually say?




Science (and Computer Vision or
Machine Learning) cannot prove things
to be true via data



Science (and Computer Vision or
Machine Learning) cannot prove things
to be true via data

we can only demonstrate that things
are inconsistent with data



Model selection illustration: Gravity!

Stable Diffusion: “Drop cannonball and
orange off the leaning tower of Pisa.”
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Model selection illustration: Gravity!

Stable Diffusion: “Drop cannonball and
orange off the leaning tower of Pisa.”

Apollo 15 Hammer-Feather Drop

NASASolarSystem 0 48K
14.9K subscribers

op A Share
576K views 8 years ago

Atthe end of the last Apollo 15 moon walk, Commander David Scott (pictured above) performed
alive demonstration for the television cameras. He held out  geologic hammer and a feather
and dropped them at the same time. Because they were essentially in a vacuum, there v ...more



Bayes’ Rule for model selection..

Likelihood Prior
——
p(D | w) x p(w)

p(w | D) =
w—/( D) p(D)
Posterior SN—~—

Evidence

Data D = {X, Y}, input/output pairs, and parameters w



Bayes’ Rule for model selection..

Likelihood under model Prior

D |w, M =m)xp(w, M =m)
p(D | M =m)
—_— —————

Evidence for model

p(w | D, M =m) = o

Posterior under model

Data D = {X, Y}, input/output pairs, and parameters w for Model M = m



Bayes’ Rule for model selection..

Likelihood under model Prior

p(D | w, M = m) x p(w, M = m)
p(D | M =m)
—_————

Evidence for model

p(w | D, M =m) =

Posterior under model

Data D = {X, Y}, input/output pairs, and parameters w for Model M = m

Evidence for model Prior for model
DM — ) x oM —
p(M =m|D) = il m) X p(M = m)
Posterior for model —

Data



Bayes’ Rule for model selection..

Likelihood under model Prior

p(D | w, M = m) x p(w, M = m)
p(D | M =m)
—_———

Evidence for model

p(w | D, M =m) =

Posterior under model

Data D = {X, Y}, input/output pairs, and parameters w for Model M = m

Evidence for model Prior for model
p(M =m ]D):p( |/ m) x p(M =m)
— p(D)
Posterior for model ——
Data

If prior over models is equal, we compare via the Evidence for the Model: p(D | M = m)



Model selection example

Fitting polynomial models to data under Gaussian noise, &, ~ N(0, 02):

Model 1
Model 2
Model 3
Model 4 :
Model 5 :

Parameters wy, = [ag, ...

“Yn
CUn
“Yn

Yn
Yn

=aptaixry, +epn

= ap + a1y, + agr® + ey

=ag + ar1xy + a2x2 + a3x3 +én

= ag + a1z, + agx® + azx® + a2t + ¢,

= ap + a1z, + agx? + azz® + agxt + azz® + ¢,

, @] for model m, where m € [1, ... ,5].



Model selection example

Posterior Model Probability
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Model selection example (more noise)

Posterior Model Probability

0.4

0.2

0.0

3
Model Selection After 1 Observations
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8 8 8 8
6 6 6 6
4 4 4 4
2 2 2 2
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= & N J
e == = 04 of 12
O > 17 N )4 -
-2 -2 -2 -2 -
1 1 1 1 -1
Polynomial Order 1 Polynomial Order 2 Polynomial Order 3 Polynomial Order 4 Polynomial Order 5

2



Evaluation




Motivation

No Free Lunch

Whirlwind Introduction to Inverse Probabilities

Model Selection

Evaluation

Bayesian Machine Learning: Simple Example

Why don't we do Model Selection in Vision?

Illustrative Examples of Uncertainty in Vision

Illustration: Structured Uncertainty Prediction Networks (SUPN)

Conclusions



Evaluation in Computer Vision

We have made a cool new model with great advances..

- How do we evaluate empirical performance?
- What do we care about?



Evaluation in Computer Vision

We have made a cool new model with great advances..

- How do we evaluate empirical performance?
- What do we care about?

We probably want:

- Fair comparisons (comparing methods)
- Useful comparisons (what can we learn)
- Understand limitations (how confident should we be)



Model name

RMSE Mean |

MD2 Boot+Log 3.850
MD2 Boot+Self 3.795
Diagonal 4.000
SUPN Boot+Log 4.071
SUPN Boot+Self 4.091




Model name RMSE Mean |

MD?2 Boot+Log 3.850
MD2 Boot+Self 3.795
Diagonal 4.000
SUPN Boot+Log 4.071
SUPN Boot+Self 4.091

- We are showing the Root of the Mean Squared Error
- We want lower scores so the MD2 model is the best?



Model name

RMSE Mean |

MD2 Boot+Log
MD2 Boot+Self

3.850 (1.370)
3.795 (1.397)

Diagonal
SUPN Boot+Log
SUPN Boot+Self

4.000 (1.457)
4.071 (1.489)
4.091 (1.442)




Model name RMSE Mean |

MD2 Boot+Log 3.850 (1.370)
MD?2 Boot+Self 3.795 (1.397)

Diagonal 4.000 (1.457)
SUPN Boot+Log 4.071 (1.489)
SUPN Boot+Self  4.091 (1.442)

- We now have standard errors (i.e. the standard deviation)
- Does this change things?



Ensembleq } |@meon o
RMSE Mean
SUPN (ours) 4 F— ——D O 00O

0 5 10 15

Figure 2. Box plot illustrating the strong distribution overlap between the original
ensemble and the trained SUPN model for Boot+Log RMSE mean.



Ensembleq } |@meon o
RMSE Mean
SUPN (ours) 4 F— ——D O 00O

0 5 10 15

Figure 2. Box plot illustrating the strong distribution overlap between the original
ensemble and the trained SUPN model for Boot+Log RMSE mean.

- Looking at the reveals very similar performance
- The SUPN mean is skewed by only 3 outliers!






Important slide acknowledgements!

[llustrations taken from the excellent new text book from Simon Prince:
Understanding Deep Learning, Simon J.D. Prince, MIT Press
Final draft available on the website:

https://udlbook.github.io/udlbook/



Important slide acknowledgements!

[llustrations taken from the excellent new text book from Simon Prince:
Understanding Deep Learning, Simon J.D. Prince, MIT Press
Final draft available on the website:

https://udlbook.github.io/udlbook/

| strongly recommend you take a look!






Evaluation: Training vs Test
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Evaluation: Toy regression model
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Evaluation: Noise, Bias and Variance

Un = f(xn;0) +en, n=1...N, &,~N(0,0%
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Evaluation: Noise, Bias and Variance

yn:f(xn;ﬁb)"i‘Eny n=1...N, SnNN(O,O'Q)

y(z) = f(z;0) + ¢
= /y(x)p(y
Now consider a least squares( 2) oss function:
L(w,¢) = (f(z:0) — y(2))’
= ((f e

) + (u(z) —y(z)))”
= (f(z;9) — p(@))” +2(f (= > (@) (u(z) - y(@) + (u(z) - y(x))*



Evaluation: Noise, Bias and Variance

yn:f(xn;ﬁb)"i‘Eny n=1...N, SnNN(O,O'Q)

y(z) = f(z;0) + ¢
= /y(x)p(y
Now consider a least squares( 2) oss function:
L(w,¢) = (f(z:0) — y(2))’
= ((f (@) + (u() — y(@))*
= (f(2:0) = (@)’ +2(f(x > (@) () = (@) + (u(z) — ()"

2

= Ey[£(%¢)] = (f(x, ¢) — M(«T)) + 02



Evaluation: Noise, Bias and Variance

Ey[L(z,6)] = (f(2:0) — n(x))” + g%
noise
We have partitioned the expected loss into two terms, the second is some irreducible

noise that comes with the observations (e.g. sensor noise).



Evaluation: Noise, Bias and Variance

noise

We have partitioned the expected loss into two terms, the second is some irreducible
noise that comes with the observations (e.g. sensor noise).

So far we have ignored the fact that we actually estimate parameters from a sampled
dataset D = {z,,, yn 1N,

fulw) == Ep f(z:6(D))]
= (F(:6) — u(2))* = ((F(2:6p) — ful@)) + (fulz) — u(2)))*
= ED[<f<x;¢> - u( >>2} = Ep | (f(w:6p) — fu(@)" | + (ful@) = (=)



Evaluation: Noise, Bias and Variance

Therefore, if we take expectations over datasets, our expected loss comprises three terms:

2 2

Ep[Ey[£(z,6)]] = En| (f(2:6p) — fu(@)’ | + (fule) — n(@))* + o
N— —

~—~
noise

variance bias

Note: more complex for models other than least squares...



Evaluation: Noise, Bias and Variance

Therefore, if we take expectations over datasets, our expected loss comprises three terms:

Ep[Ey[£L(z,¢)]] = Ep| (f(2; ¢p) — fu(2))’] +M+g’2’

variance bias

Note: more complex for models other than least squares...

Noise Error in measurements (e.g. sensor noise, missing data, data mislabelled, ...)
Bias Systematic deviation from the true mean of the function (e.g. due to limitations of our model, ...)

Variance Uncertainty in the fitting of our model due to limitations of the dataset (e.g. too few samples, dataset
doesn't span the distribution, ...)



best possible

model from true
infinite data function
. 2 . 2 2
Ep[E,[L(z,9)]] = Ep (f(fv§¢D) = ful2) ) + (fulz) = p(z) ) +£/
bias noise
variance
a) Noise b) Bias @) Variance




Evaluation: Variance reduction
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Evaluation: Overfitting
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Evaluation: Bias-Variance tradeoff
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Evaluation: Statistical Significance..

- If you have some statistics training you may be familiar with the concept of statistical
significance

- At high-level, this concerns the overlapping of (error) distributions and whether you
could distinguish reliably between two distributions



Evaluation: Statistical Significance..

- If you have some statistics training you may be familiar with the concept of statistical
significance

- At high-level, this concerns the overlapping of (error) distributions and whether you
could distinguish reliably between two distributions

- Itis possible to conduct formal tests...

- My Advice: try to avoid this as it is prone to all kinds of subtle decisions and
arguments. Better to show the raw data in a useful form and people can perform
their own assessment...



Table 1. Mean gap performance for various test functions; higher is better. The upper table shows the results after 50 objective function
evaluations and the lower table after 100 evaluations. Due to computational cost, Warped GP results are only reported for 50 evaluations.
Methods not significantly different from the best performing method with respect by a two-sided paired Wilcoxon signed-rank test at a 5%
significance level over 20 repetitions are shown in bold (Malkomes & Garnett, 2018). For results in terms of regret, see the supplement.

Benchmark Evals Dim Properties GP  Warped GP Homosced GP  Heterosced GP LGP
Hartmann 50 6 boring 0.959 0.537 0.881 0.973 0.937
Griewank 50 2 oscillatory 0.914 0.493 0.752 0913 0.897
Shubert 50 2 oscillatory 0.378 0.158 0.378 0.480 0.593
Ackley [-10, 30]¢ 50 2 complicated, oscillatory  0.924 0.274 0.892 0912 0.927
Cross In Tray 50 2 complicated, oscillatory  0.954 0.385 0.929 0977 0.945
Holder table 50 2 complicated, oscillatory  0.939 0.896 0.900 0.931 0.993
Corrupted Holder Table 50 2 complicated, oscillatory  0.741 0.798 0.826 0.729  0.896




Evaluation: Look at test error distributions (e.g. histograms..)
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Evaluation: Look at test error distributions (e.g. histograms..)
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Evaluation: Look at test error distributions (e.g. histograms..)
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Evaluation: Alignments example with error bars..
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Evaluation: Alignments example with error bars..

(a) MTGP Z

¥
s

(d) GP-LVA Z

(c) MTGP missing data examples

(f) GP-LVA missing data examples

(g) AMTGP Z

(h) AMTGP function posteriors (aligned)

(i) AMTGP missing data examples



Evaluation: Alignments example with error bars..

(i) AMTGP missing data examples



Evaluation: Example with histograms (e.g. violin plots)..

2.00 2.00 2.00 T 2.00 2.00 2.00 T
AE
1.75 1.75 1.75 VAE 1.75 1.75
1.50 1.50 1.50 GAN 1.50 1.50
1.25 1.25 1.25 1.25 1.25
w w w w w
2 2 | 2100 £1.00 £1.00
=1.00 =21.00 zL L 21 zL
= = =z p— — =z =z
0.75 0.75 0.75 0.75 0.75
0.50 0.50 0.50 0.50 0.50
0.25 0.25 0.25 0.25 0.25
0.00 5 0.00 10 0.00 0.00 5 0.00 10 0.00 20
Latent dimension Latent dimension

(a) MNIST dataset (b) Shapes dataset



Evaluation:

Histograms with illustrations!

— ose Huber

— 12
—— Huber :.

- / q3

10K

15K — ».',.

0 100 200 300 400
mm

Figure 1: Error distribution on Human36M using our multi-camera model. Results are included for
the untrained (Baseline) network and for the learnt shapes for the energy functions using both the
{5 and the Huber loss. For visual clarity, we sort the datapoints by order of increasing error for the
Huber case (i.e. our most effective approach). All models perform well on typical input instances,
and fail in a limited number of cases. These outliers, however, have a noticeable, negative impact on
the average error. We also provide reconstruction examples from the low, medium and tail part of the

distribution.



Bayesian Machine Learning: Simple
Example




Overview...

Bayesian Machine Learning: Simple Example



Bayesian Machine Learning: Simple Example

Switch to demo notebook..



Why don’t we do Model Selection in
Vision?
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Why don’t we do Model Selection in Vision?

- History?
- Ablation Studies?
- Philosphical / Paradigm?

- It's difficult to do!
- Integrals are often difficult or considered expensive

- Sometimes this is true, sometimes you can be clever/approximate

In era of empirical computer vision, how you
evaluate is really important!



Illustrative Examples of Uncertainty
in Vision




Overview...

[llustrative Examples of Uncertainty in Vision



Illustrative (practical) examples of uncertainty in vision

- Bayesian Deep Learning (BDL)
- Ensemble (deep) Approaches

- Structured Approximations



Uncertainty in vision: Bayesian Deep Learning

* Bayesian Deep Learning

oo ! : :
- ! ZosfT : ,
: ; ok : :
1 2 3 4 s 3 2 1 ° 1 2 3 L (a) Input Image (b) Ground Truth  (c) Semantic (d) Aleatoric (e) Epistemic
. . Soamentation Unceriy Urcansimy
(0 Aiary uncion () a3 o of s x (Gofima ) (9 (7<) 2 fncio of s (sfima o)

‘What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?

Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning

Alex Kendall Yarin G:
University of Cambridge University of Cambridge
Yarin Gal Y279 @ A ACUK agk34@cam.ac.uk yg279@cam.ac.uk
Zoubin Ghahramani 26201 @CAM.AC.UK
University of Cambridge
Abstract Abstract

Deep I s b ned e of Bayesian uncertainty (Herzog & Ostwald, 2013; Trafi-

Yeep leaming tools have gained tremendous at- mow & Marks, 2015; Nuzzo, 2014), new needs arise from " . .
tenion in appled machine learing. However 4% [ Merks 01 There are two major types of uncertainty one can model. Aleatoric uncertainty
such toos fo regression and classification do " captures noise inherent in the observations. On the other hand, epistemic uncer-

ot capure "“"'jd uncetanty ::““m' f“"d;"’ “f‘l’ ";l"'“"!“:f‘;" “"ﬂ':!:“"'l" M;‘ C';m‘m- tainty accounts for uncertainty in the model — uncertainty which can be explained
son, Bayesian models offer a mathematcally don do not capture model uncerainty. In classification, ¢ " ¢ ! plaine
grounded framework to reason about model un- predictive probabilities obtained at the end of the pipeline. away given enough data. Traditionally it has been difficult to model epistemic

uncertainty in commuter vision bt with new Ravesian deen learnine tanls this



Uncertainty in vision: Deep ensembles

* Deep Ensembles..

Ensemble NN

Input image x

Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles

Balaji Lakshminarayanan _Alexander Pritzel ~Charles Blundell

DeepMind
{valajiln,apritzel, cblundell}google. con

Abstract

On the uncertainty of self-supervised monocular depth estimation

Matteo Poggi ppo Aleotti

Fabio Tosi Stefano Mattoccia

Department of Computer Science and Engineering (DISI)
University of Bologna, Italy

{m.poggi, filippo.aleotti2, fabio.tosis, stefano.mattoccia Jeunibo.it

Abstract

Self-supervised paradigms for monocular depth estima-
tion are very appealing since they do not require ground
truth annotations at all. Despite the astonishing results
yielded by such methodologies, learning to reason about the
uncertainty of the estimated depth maps is of paramount im-
portance for practical applications, yet uncharted in the lit-
erature. Purposely, we explore for the first time how to esti-
mate the uncertainty for this task and how this affects depth
accuracy, proposing anovel peculiar technique specifically
designed for self-supervised approaches. On the standard

ITTI dataset, we exhaustively assess the performance of

each method with diffrentelfsupervised paradigms. Such
evaluation highlights that our proposal i) always impro
depth accuracy significantly and i) yields state- a/—lh:wn
results concerning uncertainty estimation when training
on sequences and competitive results uniquely deploying
stereo pairs.

High

Figure 1. How much can we trust self-supervised monocul
2 From a single input image (top) we estimate
depth (middle) and uncertainty (bottom) maps. Best with colors.




Uncertainty in vision: Deep ensembles

* Deep Ensembles..

i) WW
A Simple Baseline for Bayesian Uncertainty disk(p,0) l . . ‘ v
in Deep Learning = —

I © Decp Ensembles © VI © Multi-SWAG |

Wesley J. Maddox*!  Timur Garipov*>  Pavel Izmailov*!
Dmitry Vetrov?® Andrew Gordon Wilson!

! New York University
2 Samsung Al Center Moscow
3 Samsung-HSE Laboratory, National Rescarch University Higher School of Economics

Abstract

We propose SWA-Gaussian (SWAG), a simple, scalable, and general purpose
approach for uncertainty representation and calibration in deep learning. Stochastic
Weight Averaging (SWA), which computes the first moment of stochastic gradient
descent (SGD) iterates with a modified learning rate schedule, has recently been
shown to improve generalization in deep leaning. With SWAG, we fit a Gaussian
using the SWA solution as the first moment and a low rank plus diagonal covariance Loss Surfaces, Mode Connectivity, and F

ast of DNNs
also derived from the SGD iterates, forming an approximate posterior distribution °T. Garipov, P. Izmailov, D. Podoprikhin, . Vetrov, A.G. Wilson
over neural network weights: we then samole from this Gaussian distribution to N DG 2012




Uncertainty in vision: Structured approximation

« Structured approximation..

Our Approach: Structured Gaussian
Ensemble
- _’ Mean p(x)
CNN @ Input image x ”

Input image x Benefits: Covariance (x)

Learning Structured Gaussians to Approximate Deep Ensembles

Unlimited samples Model introspection Conditioning

Ivor J.A. Simpson Sara Vicente Neill D.F. Campbell
University of Sussex, UK Niantic, UK University of Bath, UK

i.simoson@sussex.ac.uk svicente@nianticlabs.com n.camobell@bath.ac.uk



[llustration: Structured Uncertainty
Prediction Networks (SUPN)




Overview...

[llustration: Structured Uncertainty Prediction Networks (SUPN)



Generative model zoo
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Unreasonable expectations of generative models?

e.g. VAE with:

z € RM,

= [07 1]3><N><N | y

Figure 1: How many degrees of freedom are there in the image?



“VAEs produce overly smooth output”

VAE
.@‘

[Dorta et al. 2018]



“VAEs produce overly smooth output”

- VAE
f .@‘

[Dorta et al. 2018]



“VAEs produce overly smooth output”

- VAE
p(z)

[Dorta et al. 2018]



“VAEs produce overly smooth output”

- VAE -
. @ M g | | |
w(z)

Zdiag(z

[Dorta et al. 2018]



“VAEs produce overly smooth output”

[Dorta et al. 2018]



“VAEs produce overly smooth output”

- VAE

wz) diag(Z

[Dorta et al. 2018]



“VAEs produce overly smooth output”

- SUPN
p(z)

[Dorta et al. 2018]



“VAEs produce overly smooth output”

SUPN

! Efu

[Dorta et al. 2018]



“VAEs produce overly smooth output”

SUPN

! Efu

Sample

[Dorta et al. 2018]



“VAEs produce overly smooth output”

- SUPN
i . @ Generator
A

[Dorta et al. 2018]



“VAEs produce overly smooth output”

SUPN

! Efu

Sample

Residual

[Dorta et al. 2018]



“VAEs produce overly smooth output”

SUPN
OE= @.

Z /, ’ Efu

Sample

Structure in
<« --- residual captured
by covariance

Residual

[Dorta et al. 2018]
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Problem! Dense covariance O(N?)...

- Problem: ¢ (z) is quadratic in the number of pixels

- Solution: Sparse parameterisation of the Cholesky factor of the precision

S(z) = [A(z)] "= [La(z) L) (2)]

. Sparsity in the Sparsity in the
Neighbourhood = . .
precision Cholesky precision matrix

in image domain
¢ matrix L A(z) == ¥ (z)



- Sparse parameterisation of the Cholesky factor of the precision

S(z) = [AMz)] " = [La(2) L (2)]

eI L W A e
}t-_-_-_- _»@ - - * ,/
L H Xx—p f

Figure 2: Implementation through convolutional structure: matrix-vector product in O(N)



Examples of samples

Figure 3: Variation in samples from the model on test data




Introspection of the captured covariance structure

: A:,k
2 1000 & 0.006
i# 0.004
i 10 i 500 &
0.002
0 0 0.000
-0.002
-10 -500
-0.004
-20 ~1000 ~0.006

Figure 4: Visualisation of the learned correlations




Links to established concepts...

- Links to Conditional Random Field (CRF) models

- a Gaussian CRF - e.g. “Regression Tree Fields” [Jancsary et al. 2012]
- Links to adaptive local regularisation models

- e.g locally adaptive TV or Laplacian based methods

- Links to Wavelet approaches
- considering hierarchical extensions or combining fixed basis functions



Links to established concepts...

- Links to Conditional Random Field (CRF) models
- a Gaussian CRF - e.g. “Regression Tree Fields” [Jancsary et al. 2012]
- Links to adaptive local regularisation models
- e.g locally adaptive TV or Laplacian based methods
- Links to Wavelet approaches
- considering hierarchical extensions or combining fixed basis functions

- Things to be careful about
- priors on sparse precision (consider Cholesky structure)
- need to bound terms
- lots to say about these things...



Testing with denoising...

Denoised

Input @ £
> g = Noi
—>»| VAE oisy =
X - residual + d

\ g l.
~O-
"

| Projected
2% residual
Model MSE PSNR SSIM
DAE 0.005 + 0.003 28.89 4+ 1.69 0.90 £ 0.03
SUPN 0.003 £+ 0.001 31.38 + 0.92 0.92 + 0.02

Figure 5: Denoising example using SUPN (vs a denoising autoencoder). The SUPN model has only
been trained as in a generative manner (i.e. as a prior).



Testing with denoising...

Original Input Mean Noisy Proj. Ours DAE
image residual residual




SUPN as a prior for inverse problems

- Consider a hierarchical model for the inverse problem

p(x,2|y) < p(y %) pg(x|2) pz(z)

- We will take a MAP estimate for z rather than marginalising : -(



SUPN as a prior for inverse problems

- Consider a hierarchical model for the inverse problem

p(x,2|y) x p(y|x) pg(x|2) pz(2)
- We will take a MAP estimate for z rather than marginalising : -(

« From before (with a Gaussian observation likelihood) and pz(z) ~ N (0, 1)

D(y,Ax) = o[ Ax —yl3

1
252
R(x) i= mip log[2(2)] + 3 x — po(a) 2,y + B
2eZ 2 Zo(z) T 217112
- Where the Generator provides N (x| pg(z), Xg(2)) via a network [u, L] = f(z;0)
and ||al|% := a’ %=1 a denotes a Gaussian weighted norm



SUPN as a prior for inverse problems

- Consider a hierarchical model for the inverse problem

p(x,2|y) < p(y |x) pg(x|2) pz(2)
- We will take a MAP estimate for z rather than marginalising : -(
« From before (with a Gaussian observation likelihood) and pz(z) ~ N (0, 1)

D(y,Ax) = o[ Ax —yl3

1
252
R(x) i= mip log[2(2)] + 3 x — po(a) 2,y + B
2eZ 2 Zo(z) T 217112
- Where the Generator provides N (x| pg(z), Xg(2)) via a network [u, L] = f(z;0)
and ||al|% := a’ %=1 a denotes a Gaussian weighted norm

- Note: the network still outputs O(N') values and evaluation of R(x) can be
performed in O(N) time using L for the first two terms



Aside: Images and manifolds
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FastMRI knee covariance models...

i

%3
™~

Ground truth

Generated mean Grouﬁd truth - mean

Sampled
diag. covariance

Sampled
struct. covariance

Figure 12: Samples from trained generative models with diagonal and structured covariances



Introspection: Visualisation of learned covariances...

(A

Figure 13: Visualisation of learned covariances; red indicates a high positive correlation, and blue is

a strong negative correlation.



Comparison vs supervised reconstruction method

30.0
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30.0
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1
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1 1 1
20 40 60 80 100 120 140 15'%.00625 0.0125 0.025 0.05 0.1 0.2
Number of radial spokes Noise level

Figure 14: Comparison with the supervised variational networks [Hammernik et al. 2018]. The

vertical lines depict the experimental settings the variational networks were trained on.




Example reconstruction comparison (varying number of spokes)

Range Narnhofer19

mean+covar

VN VN
25-0.05 125-0.05

125

Spokes

Figure 15: Varying number of spokes. The PSNR values are added in white and the red boxes
indicate the settings the highlighted variational network has been trained on.



Conclusions




Conclusions

- Hopefully motivated the need for uncertainty in vision (?)
- These techniques are important!

- Make vision safe, trustworthy and robust for applications
- Rigour in experimental validation

+ There is still much work do be done here!
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3rd Workshop on Uncertainty in Vision (at ECCV)

https://uncertainty-cv.github.io/2024/

rkshop on Uncertainty Quantification
for Computer Vision

ECCV 2024 Workshop

About Call for Papers Accepted Papers Program

In the last decade, substantial progress has been made w.r.t. the performance of computer vision systems, a significant
part of it thanks to deep learning. These sharp ity growth and a rise in industrial
investment. However, most current models lack the ability to reason about the confidence of their predictions; integrating
uncertainty quantification into vision systems will help recognize failure scenarios and enable robust applications.

In addition to advances in Bayesian deep learning, providing practical approaches for vision problems, the workshop will
provide a forum for di: i ising research directions, which have received less attention, as well as advancing
current practices to drive future research. Examples include: the development of new metrics that reflect the real-world
need for uncertainty when using vision systems with down-stream tasks; and moving beyond point-estimates to address
the multi-modal ambiguities inherent in many vision tasks.

This years UNcertainty quantification for Computer Vision (UNCV) Workshop aims to raise awareness and generate
discussion regarding how predictive uncertainty can, and should, be effectively incorporated into models within the vision
community. The workshop will bring together experts from machine learning and computer vision to create a new




Important slide acknowledgements!

[llustrations taken from the excellent new text book from Simon Prince:
Understanding Deep Learning, Simon J.D. Prince, MIT Press
Final draft available on the website:

https://udlbook.github.io/udlbook/



Further Reading

- Understanding Deep Learning, Simon J.D. Prince
- https://udlbook.github.io/udlbook/
- Information Theory, Inference, and Learning Algorithms, David MacKay
- https://ww.inference.org.uk/itprnn/book.html
- Pattern Recognition and Machine Learning, Christopher M. Bishop
- Microsoft Website with PDF
- Computer Vision: Models, Learning, and Inference, Simon J.D. Prince
- http://ww.computervisionmodels.com/


https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

That's all folks..
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