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Here be monsters…

Figure 1: Not quite at Mordor yet..









Storytime…

“breaking the ubiquitous ML assumption in image and vision computing that errors and
uncertainties at neighbouring pixels are independent, despite their demonstrable spatial
structure”



Is unsupervised learning a thing?



Unsupervised learning → generative models

Figure 2: Stable Diffusion: “The manifold of cats.”

• “Find me some p(z) and f(z) such that
x ∼ f(z) when z ∼ p(z)..”

• This has trivial solutions

• Need constraints
• Utility ↔ use-case

• Generative models as priors
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Inverse problem setup

• Inverse problem y = A x + ε for some forward model A : X → Y and noise ε

• Variational regularisation framework (for some similarity D(·, ·))

x∗ ∈ arg min
x∈X

D(y, A x) + λ R(x)

• Regulariser from an explicit prior distribution, R(x) := log p(x |θ)

• x∗ considered a MAP estimate if D(y, A x) := log p
(
y |f(A x), . . .

)
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Deep learning approaches for inverse problems

Supervised: image data 
pairs available

Unsupervised: only 
ground truth data

No data 

Forward model 
unknown in 
training 

Forward model 
known in 
training 

Adversarial 
regularisation 

Learned post 
processing

Deep image priors 

Automap 

Generative regularisers

Plug and play methods 

Unrolled iterative 
methods 

Deep equilibrium 
methods

No training 

Figure 2-1: A graph comparing various deep learning approaches to inverse prob-
lems.

model during the deep neural network training. Some methods decouple the
forward model and image reconstruction from the modelling of the image space
with a deep neural network and others utilise information about the forward
model in the deep neural network architecture. A summary of the analysis is also
given in table 2.1. For other reviews consider [16, 159].

2.4.1 Untrained Methods

Deep Image Priors (DIP)[222, 219, 59] take an untrained convolutional neural
network and use the weights of the neural network parameterise the image space
i.e. for a fixed z, x = f✓(z) maps the weights, ✓, to images, x. Given some
observed measurements, y, and a fixed z, the inverse problem can be reformulated
as

✓⇤ 2 argmin
✓

D(Af✓(z), y), x⇤ = f✓⇤(z), (2.13)

where D(·, ·) : Y ⇥ Y ! R�0 is some loss function. The idea is that the network
provides implicit regularisation as the convolutional networks favour ‘natural im-
ages’. Exactly what ‘natural’ means is hard to define.

The success of DIP usually relies on further regularisation of (2.13). If the gen-
erator network is su�ciently wide and given su�ciently many iterative updates,
then gradient descent will solve the non-convex optimisation problem in (2.13) to
fit any signal, y, however noisy or corrupted [222], which is not desirable. Addi-

28

[Duff 2023]



Generative models



Generative model zoo
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Unreasonable expectations of generative models?

x

z θϕ

e.g. VAE with:

z ∈ RM ,

x ∈ [0, 1]3×N×N

Figure 3: How many degrees of freedom are there in the image?



Properties we would like

• Span the data space

• Representative samples
• Conditions on mapping
(e.g. “smooth”)

• Evaluate densities (e.g. take
likelihood)

• Uncertainty (e.g. account for
failure to model)

• Introspection
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Structured Uncertainty Prediction
Networks (SUPN)



Overview…

Is unsupervised learning a thing?

Generative models

Structured Uncertainty Prediction Networks (SUPN)

SUPN as a prior for inverse problems

Compositional Models

Where to next?

Thanks!



“VAEs produce overly smooth output”

Encoder z Generator

VAE

SUPN

µ(z) , Σdiag(z)︸ ︷︷ ︸
Sample

Statistics don’t match

, Σfull(z)︸ ︷︷ ︸
Sample

Statistics match!!

−

Residual

Structure in
residual captured
by covariance

[Dorta et al. 2018]
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Problem! Dense covariance O(N2)…

• Problem: Σfull(z) is quadratic in the number of pixels

• Solution: Sparse parameterisation of the Cholesky factor of the precision

Σ(z) :=
[
Λ(z)

]−1 :=
[
LΛ(z) L⊤

Λ(z)
]−1

Neighbourhood
in image domain

Sparsity in the
precision Cholesky

matrix LΛ

Sparsity in the
precision matrix
Λ(z) := Σ−1(z)
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Efficient implementation

• Sparse parameterisation of the Cholesky factor of the precision

Σ(z) :=
[
Λ(z)

]−1 :=
[
LΛ(z) L⊤

Λ(z)
]−1

Figure 4: Implementation through convolutional structure: matrix-vector product in O(N)



Examples of samples

Figure 5: Variation in samples from the model on test data



Introspection of the captured covariance structure

Figure 6: Visualisation of the learned correlations



Links to established concepts…

• Links to Conditional Random Field (CRF) models
• a Gaussian CRF - e.g. “Regression Tree Fields” [Jancsary et al. 2012]

• Links to adaptive local regularisation models
• e.g. locally adaptive TV or Laplacian based methods

• Links to Wavelet approaches
• considering hierarchical extensions or combining fixed basis functions

• Things to be careful about
• priors on sparse precision (consider Cholesky structure)
• need to bound terms
• lots to say about these things…
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Testing with denoising…

Figure 7: Denoising example using SUPN (vs a denoising autoencoder). The SUPN model has only
been trained as in a generative manner (i.e. as a prior).



Testing with denoising…

Figure 8: Comparison to denoising autoencoder



SUPN as a prior for inverse problems
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SUPN as a prior for inverse problems

• Consider a hierarchical model for the inverse problem

p(x, z |y) ∝ p(y |x) pG(x |z) pZ(z)

• We will take a MAP estimate for z rather than marginalising :-(

• From before (with a Gaussian observation likelihood) and pZ(z) ∼ N (0, I)

D(y, A x) := 1
2σ2 ∥A x − y∥2

2

R(x) := min
z∈Z

log |Σθ(z)| + 1
2
∥∥x − µθ(z)

∥∥2
Σθ(z) + 1

2
∥z∥2

2

• Where the Generator provides N
(
x |µθ(z), Σθ(z)

)
via a network [µ, LΛ] = f(z; θ)

and ∥a∥2
Σ := a⊤ Σ−1 a denotes a Gaussian weighted norm

• Note: the network still outputs O(N) values and evaluation of R(x) can be
performed in O(N) time using LΛ for the first two terms



SUPN as a prior for inverse problems

• Consider a hierarchical model for the inverse problem

p(x, z |y) ∝ p(y |x) pG(x |z) pZ(z)

• We will take a MAP estimate for z rather than marginalising :-(
• From before (with a Gaussian observation likelihood) and pZ(z) ∼ N (0, I)

D(y, A x) := 1
2σ2 ∥A x − y∥2

2

R(x) := min
z∈Z

log |Σθ(z)| + 1
2
∥∥x − µθ(z)

∥∥2
Σθ(z) + 1

2
∥z∥2

2

• Where the Generator provides N
(
x |µθ(z), Σθ(z)

)
via a network [µ, LΛ] = f(z; θ)

and ∥a∥2
Σ := a⊤ Σ−1 a denotes a Gaussian weighted norm

• Note: the network still outputs O(N) values and evaluation of R(x) can be
performed in O(N) time using LΛ for the first two terms



SUPN as a prior for inverse problems

• Consider a hierarchical model for the inverse problem

p(x, z |y) ∝ p(y |x) pG(x |z) pZ(z)

• We will take a MAP estimate for z rather than marginalising :-(
• From before (with a Gaussian observation likelihood) and pZ(z) ∼ N (0, I)

D(y, A x) := 1
2σ2 ∥A x − y∥2

2

R(x) := min
z∈Z

log |Σθ(z)| + 1
2
∥∥x − µθ(z)

∥∥2
Σθ(z) + 1

2
∥z∥2

2

• Where the Generator provides N
(
x |µθ(z), Σθ(z)

)
via a network [µ, LΛ] = f(z; θ)

and ∥a∥2
Σ := a⊤ Σ−1 a denotes a Gaussian weighted norm

• Note: the network still outputs O(N) values and evaluation of R(x) can be
performed in O(N) time using LΛ for the first two terms



Aside: Images and manifolds

Figure 9: The range of the generator



Aside: Images and manifolds

Figure 10: The range of the generator



Aside: Images and manifolds

Figure 11: Independence away from the generator



Aside: Images and manifolds

Figure 12: Structured departure from the generator



Aside: Images and manifolds

Figure 13: Structured departure from the generator



Proof of concept example: NYU fastMRI knee dataset

• Images from sampled magnitude volumes (not proper MRI!)

• Task inspired by the single-coil reconstruction

• Sample with a varying number of radial spokes

• Generator trained in two stages, first the mean, then the Cholesky

• Initialise with z(0) using the encoding of a rough reconstruction, given by the adjoint
of the forward operator, and the corresponding mean output for x(0)

• Use alternating gradient descent for x and z with backtracking line search



FastMRI knee covariance models…

Figure 14: Samples from trained generative models with diagonal and structured covariances



Introspection: Visualisation of learned covariances…

Figure 15: Visualisation of learned covariances; red indicates a high positive correlation, and blue is
a strong negative correlation.



Comparison vs supervised reconstruction method

Figure 16: Comparison with the supervised variational networks [Hammernik et al. 2018]. The
vertical lines depict the experimental settings the variational networks were trained on.



Example reconstruction comparison (varying number of spokes)

Figure 17: Varying number of spokes. The PSNR values are added in white and the red boxes
indicate the settings the highlighted variational network has been trained on.



Open challenges

• Nice introspection but what about dataset bias?

• Extensions to complex variants (e.g. proper MRI)

• Convergence rates (e.g. looking at natural gradients)

• Convexity/uniqueness

• Assumption that “ground truth” data available



Dropped my Bayesian Card (tm)
somewhere along the way..



Uncertainty in Computer Vision!
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Compositional models

Figure 18: Examples of composite models



Compositional models

• Hierarchical/composite models

• More deep GPs than deep Bayesian Neural Networks (although some thoughts
applicable)

• Such models are likely to contain “compositional uncertainty”

• Related to ideas around identifiability from statistics
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Example of composition: alignment

Correspondences found 
globally across all 

examples..

..unique 
parameterization in 
parameter vector

Global matching (universal parameterization):

Pairwise matching:

A B B C C A

Consistency problem:

� � � � � � � �= 




Example of composition: alignment



Uncertainty within compositions..

• Illustration: rigid shape transformation..

input → R1 → T1 → R2 → T2 → output

• Here under-constrained → uncertainty
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Examples..

• Two layer decomposition of a chirp:

• Three layer decomposition of a sinusoid:



Examples..

• Two layer decomposition of a chirp:

• Three layer decomposition of a sinusoid:



Background on Hierarchical/Composite/Deep GPs..

• A deep GP is a distribution over compositions of functions

f = fL ◦ . . . ◦ f1

where each fi is a regular GP

• Typically we use a formulation based on the Sparse Variational GP

• Each layer maintains a set of inducing distributions q(Ui) specified at set of
corresponding inducing locations

• The training goal is to approximate the posterior p({Ui}|Y, X) with these
distributions



Doubly Stochastic Variational Inference (DSVI)

Variational approximation scheme [Salimbeni 2017] Given our dataD = {xn, yn}
we model

yn = (fL ◦ · · · ◦ f1)(xn) + εn

with fl ∼ GP
(
µl(·), κl(·, ·)

)
We use Fl ∼ (fl ◦ · · · ◦ f1)(X) to denote the evalu-

ation of the entire input data X at layer l = 2, . . . , L The joint distribution (with
F0 := X) is

p(Y, FL, . . . , F1 | X) = p(Y | FL)
L∏

l=1
p(FL | Fl−1)

Importantly, we cannot perform the marginalisation integral as the Gaussian fac-
tors are contained inside non-linear kernels



We seek a lower bound

L ≤ p(Y, FL, . . . , F1 | X) = p(Y | FL)
L∏

l=1
p(FL | Fl−1)

We define inducing locations {Zl} and function output {Ul} for each layer

p(Y, {Fl}, {Ul} | X, {Zl}) = p(Y | FL)
L∏

l=1
p(FL | Fl−1, Ul, Zl−1) p(Ul | Zl−1)

There is a specific form for the GP posteriors p(FL | Fl−1, Ul, Zl−1) ∼ N (µl, Σl)

µl = µl(Fl−1) + αl(Fl−1)⊤(Ul − µl(Fl−1)
)

Σl = κl(Fl−1, Fl−1) − αl(Fl−1)⊤ κl(Zl−1, Zl−1) αl(Fl−1)
where αl(Fl−1) := [κl(Zl−1, Zl−1)]−1 κl(Zl−1, Fl−1)



The factorised variational distributions are then introduced

q({Ul}) = q(U1) . . . q(UL), q(Ul) ∼ N (ml, Sl)

The lower bound is then

L = Eq(FL)
[
log p(Y | FL)

]
−

L∑
l=1

KL
[
q(Ul)

∥∥p(Ul | Zl−1)
]

The key DSVI insight is an efficient MC estimation of the expectation by marginal-
ising the inducing points {Ul} from the variational posterior

q({Fl}) =
L∏

l=1

∫
p(Fl | Ul) q(Ul) dUl

= q(FL | FL−1) . . . q(F1 | X), with q(Fl | Fl−1) ∼ N (µ̃, Σ̃)

where µ̃ := µl(Fl−1) + αl(Fl−1)⊤(ml − µl(Fl−1)
)

Σ̃ := κl(Fl−1, Fl−1) − αl(Fl−1)⊤ [κl(Zl−1, Zl−1) − Sl

]
αl(Fl−1)



Problem with mean field inference…

• Issue with the mean field assumption (i.e. each layer modelled independently)

q({Ul}) = q(U1) . . . q(UL), q(Ul) ∼ N (ml, Sl)
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Quantitative argument

• Assume DGP layers are independent {fl}

• Distribution of outputs of layer l − 1 form uncertain inputs to layer l

• Similar to [Mchutchon 2011] we can analyse as f(x + εx)

• Consider a single input x, we can write Fl = fl(Fl−1) = fl(F̄l−1 + εl−1) where F̄l−1

is the mean and εl−1 denotes a zero-mean distortion

• Note, εl−1 are not necessarily Gaussian (as the marginals of a Deep GP are not
Gaussian in general). We denote the variance as σ2

n := V[εl−1]

• We want to show that the variance of Fl increases with increasing variance of εl−1

• Therefore, unless the layers collapse, i.e. εl−1 → 0, the variance at the final FL will
be large and a poor fit to data
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Linear approximation for layers (uncertain input)
We approximate Fl = fl(Fl−1) ≈ fl(F̄l) + εl−1 f ′

l (F̄l) where fl(F̄l) ∼
N (µ̄l, σ̄2

l ) (both functions of F̄l−1) Recalling that a GP and its derivative are
jointly distributed [

fl(F̄l)
f ′

l (F̄l)

]
∼ N

([
µl

µ′
l

]
,

[
σ̄2

l (σ̄2
l )′

(σ̄2
l )′ (σ̄2

l )′′

])

Computing a linear transform we have

E[Fl | εl−1] = µ̄l + εl−1µ̄′
l

V[Fl | εl−1] = σ̄2
l − 2 εl−1(σ̄2

l )′ + ε2
l−1(σ̄2

l )′′

Using the law of total variance we have

V[Fl] = E
[
V[Fl | εl−1]

]
+ V

[
E[Fl | εl−1]

]
= σ̄2

l + σ2
n
[
(µ̄′

l)2 + (σ̄2
l )′′]+ O(ε2

l−1)



Illustration of posterior variance

• The only term that can be negative for V[Fl] is (σ̄2
l )′′

• Illustration with M linearly spaced inducing points over a range
∆l := [F̄l−1 − 3γl, F̄l−1 + 3γl] where γl is the kernel lengthscale for layer l.

• Minimum of (σ̄2
l )′′ → 0 as M increases; a negative value indicates all inducing

points are far from F̄l−1; this would imply a poor data fit



How do we fix this?

1. Jointly Gaussian variational distribution

q(U1, . . . , UL) ∼ N (m, S), m ∈ RLM , S ∈ RLM×LM

but both expensive and tricky to evaluate
• Can make progress with a chain-like factorisation

q({Ul}) = q(UL | UL−1) . . . q(U2 | U1) q(U1)

2. Inducing points as inducing locations; that is Ul → FZ
l ∼ (fl ◦ · · · ◦ f1)(Z)

• Thus the inducing outputs of the previous layer are the inducing locations for the next

L := Eq(FL)
[
log p(Y | FL)

]
−

L∑
l=1

Eq(FZ
l

)q(FZ
l−1)

[
log q(FZ

l )
p(FZ

l | FZ
l−1)

]

• Efficient estimation procedure in O(LNM3)



How do we fix this?

1. Jointly Gaussian variational distribution

q(U1, . . . , UL) ∼ N (m, S), m ∈ RLM , S ∈ RLM×LM

but both expensive and tricky to evaluate
• Can make progress with a chain-like factorisation

q({Ul}) = q(UL | UL−1) . . . q(U2 | U1) q(U1)

2. Inducing points as inducing locations; that is Ul → FZ
l ∼ (fl ◦ · · · ◦ f1)(Z)

• Thus the inducing outputs of the previous layer are the inducing locations for the next

L := Eq(FL)
[
log p(Y | FL)

]
−

L∑
l=1

Eq(FZ
l

)q(FZ
l−1)

[
log q(FZ

l )
p(FZ

l | FZ
l−1)

]

• Efficient estimation procedure in O(LNM3)



Fitting a chirp signal (changing lengthscale)



Fitting a compositional model to heartbeat data



Application: Alignments

• Multi-task Learning: misalignment
hinders ability to learn correct
correlations between tasks

• Previous approaches:

• Only model fixed alignment
• a-priori knowledge of task correlations
• either probabilistic or monotonic
alignment but not both
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Monotonic process for temporal alignment

• Temporal warping must not permute time

• Compromises required for existing monotonic GPs

• Propose ODE-based Monotonic GP Flow

g(x) := u(τ = T ; x) =
∫ T

0
w
(
u(τ)

)
dτ

ODE: du = w(u) dτ,

Uncertain drift function: w(u) ∼ GP
(
0, κw(u, u)

)
• ODE solution g(x) is monotonic wrt the initial condition u(τ = 0) := x

• Efficient path-wise GP sampling to solve [Terenin 2021]



Monotonic process intuition…
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Where to next?



Overview…

Is unsupervised learning a thing?

Generative models

Structured Uncertainty Prediction Networks (SUPN)

SUPN as a prior for inverse problems

Compositional Models

Where to next?

Thanks!



CAMERA



Understanding (human) motion…Would like to talk more!



Thanks!



Thanks! https://www.ndfcampbell.org n.campbell@bath.ac.uk

Joint work with Era Dorta, Margaret Duff, Ivan Ustyuzhaninov, Ieva Kazlauskaite, Markus Kaiser, Erik Bodin, Ivor
Simpson, Sara Vicente, Lourdes Agapito, Matthias Ehrhardt, Tony Shardlow, and Carl Henrik Ek. Thanks to the
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