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Here be monsters...
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Storytime...

“breaking the ubiquitous ML assumption in image and vision computing that errors and
uncertainties at neighbouring pixels are independent, despite their demonstrable spatial
structure”



Is unsupervised learning a thing?




Unsupervised learning — generative models
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Unsupervised learning — generative models

Figure 2: Stable Diffusion: “The manifold of cats.”

» “Find me some p(z) and f(z) such that

x ~ f(z)whenz ~ p(z)."

- This has trivial solutions

- Need constraints
- Utility <> use-case

- Generative models as priors
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Inverse problem setup

- Inverse problemy = Ax + ¢ for some forward model A : X — ) and noise ¢

- Variational regularisation framework (for some similarity D(-,-))

x" € arg Hé%} D(y, Ax)+ A R(x)

- Regulariser from an explicit prior distribution, R(x) := log p(x|8)

- x* considered a MAP estimate if D(y, Ax) :=logp(y|f(Ax),...)



Deep learning approaches for inverse problems
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Generative models




Generative model zoo
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Unreasonable expectations of generative models?

e.g. VAE with:

zeRM,

= [0’ 1]3><N><N

7

Figure 3: How many degrees of freedom are there in the image?



Properties we would like

- Span the data space
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Properties we would like

- Span the data space

- Representative samples

- Conditions on mapping
(e.g. “smooth”)

- Evaluate densities (e.g. take
likelihood)
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Properties we would like

- Span the data space

VAE Generator
- Representative samples ® (@) (ceneror | G @ ‘ @ @ ®
- Conditions on mapping GAN @

(e.g. “smooth”) Normalising Flow

- Evaluate densities (e.g. take fol) k()
e O g | @~ )| g | @
likelihood)

- Uncertainty (e.g. account for Diffusion/Score

failure to model) ) - @ Fto2(6) - @

- Introspection




Structured Uncertainty Prediction
Networks (SUPN)




Overview...

Structured Uncertainty Prediction Networks (SUPN)



“VAEs produce overly smooth output”
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“VAEs produce overly smooth output”
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“VAEs produce overly smooth output”
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“VAEs produce overly smooth output”

SUPN
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[Dorta et al. 2018]



“VAEs produce overly smooth output”
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Sample

[Dorta et al. 2018]



“VAEs produce overly smooth output”

- SUPN
] . @ Generator
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[Dorta et al. 2018]



“VAEs produce overly smooth output”

- SUPN
] . @ Generator

Residual

[Dorta et al. 2018]



“VAEs produce overly smooth output”

SUPN

@‘

Structure in

<«--- residual captured
by covariance

Residual

[Dorta et al. 2018]



Problem! Dense covariance O(N?)...
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Problem! Dense covariance O(N?)...

- Problem: ¢ (z) is quadratic in the number of pixels

- Solution: Sparse parameterisation of the Cholesky factor of the precision

S(z) == [A(z)] ' = [La(z) LY (2)]

. Sparsity in the Sparsity in the
Neighbourhood o o )
precision Cholesky precision matrix

in image domain
¢ matrix Ly A(z) = X7 Y(2)



- Sparse parameterisation of the Cholesky factor of the precision

S(z) = [AMz)] = [La(2) L (2)]
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Figure 4: Implementation through convolutional structure: matrix-vector product in O(N)



Examples of samples
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Figure 5: Variation in samples from the model on test data




Introspection of the captured covariance structure

eNN(O,Afl)

0.006
0.004
0.002
0.000
-0.002
-10 -500

—0.004

~1000 ~0.006

Figure 6: Visualisation of the learned correlations



Links to established concepts...

- Links to Conditional Random Field (CRF) models
- a Gaussian CRF - e.g. “Regression Tree Fields” [Jancsary et al. 2012]

- Links to adaptive local regularisation models
- e.g. locally adaptive TV or Laplacian based methods
- Links to Wavelet approaches
- considering hierarchical extensions or combining fixed basis functions



Links to established concepts...

- Links to Conditional Random Field (CRF) models
- a Gaussian CRF - e.g. “Regression Tree Fields” [Jancsary et al. 2012]
- Links to adaptive local regularisation models
- e.g locally adaptive TV or Laplacian based methods
- Links to Wavelet approaches
- considering hierarchical extensions or combining fixed basis functions

- Things to be careful about
- priors on sparse precision (consider Cholesky structure)
- need to bound terms
- lots to say about these things...



Testing with denoising...

Denoised

Input @ £
> g = Noi
—>»| VAE oisy =
X - residual + d

\ g l.
~O-
"

| Projected
2% residual
Model MSE PSNR SSIM
DAE 0.005 + 0.003 28.89 4+ 1.69 0.90 £ 0.03
SUPN 0.003 £+ 0.001 31.38 + 0.92 0.92 + 0.02

Figure 7: Denoising example using SUPN (vs a denoising autoencoder). The SUPN model has only
been trained as in a generative manner (i.e. as a prior).



Testing with denoising...

Original Input Mean Noisy Proj. Ours DAE
image residual residual
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- Consider a hierarchical model for the inverse problem

p(x,2|y) x p(y|x) pg(x|2) pz(2)
- We will take a MAP estimate for z rather than marginalising : -(
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SUPN as a prior for inverse problems

- Consider a hierarchical model for the inverse problem

p(x,2|y) < p(y |x) pg(x|2) pz(2)
- We will take a MAP estimate for z rather than marginalising : -(
« From before (with a Gaussian observation likelihood) and pz(z) ~ N (0, 1)

D(y,Ax) = o[ Ax —yl3

1
252
R(x) i= mip log[2(2)] + 3 x — po(a) 2,y + B
2eZ 2 Zo(z) T 217112
- Where the Generator provides N (x| pg(z), Xg(2)) via a network [u, L] = f(z;0)
and ||al|% := a’ %=1 a denotes a Gaussian weighted norm

- Note: the network still outputs O(N') values and evaluation of R(x) can be
performed in O(N) time using L for the first two terms
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Proof of concept example: NYU fastMRI knee dataset

- Images from sampled magnitude volumes (not proper MRI!)

- Task inspired by the single-coil reconstruction

- Sample with a varying number of radial spokes

- Generator trained in two stages, first the mean, then the Cholesky

- Initialise with z(?) using the encoding of a rough reconstruction, given by the adjoint
of the forward operator, and the corresponding mean output for x(0)

- Use alternating gradient descent for x and z with backtracking line search



FastMRI knee covariance models...
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Figure 14: Samples from trained generative models with diagonal and structured covariances



Introspection: Visualisation of learned covariances...

®

Figure 15: Visualisation of learned covariances; red indicates a high positive correlation, and blue is

a strong negative correlation.



Comparison vs supervised reconstruction method
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Figure 16: Comparison with the supervised variational networks [Hammernik et al. 2018]. The

vertical lines depict the experimental settings the variational networks were trained on.




Example reconstruction comparison (varying number of spokes)

Range Narnhofer19

mean+covar

VN VN
25-0.05 125-0.05

125

Spokes

Figure 17: Varying number of spokes. The PSNR values are added in white and the red boxes
indicate the settings the highlighted variational network has been trained on.



Open challenges

- Nice introspection but what about dataset bias?

- Extensions to complex variants (e.g. proper MRI)

- Convergence rates (e.g. looking at natural gradients)
- Convexity/uniqueness

- Assumption that “ground truth” data available



Dropped my Bayesian Card (tm)
somewhere along the way..



Uncertainty in Computer Vision!

3rd Workshop on Uncertainty Quantification
for Computer Vision

ECCV 2024 Workshop

About Call for Papers Accepted Papers Program

In the last decade, substantial progress has been made w.rit. the performance of computer vision systems, a significant
part of it thanks to deep learning. These advancements prompted sharp community growth and a rise in industrial
investment. However, most current models lack the ability to reason about the confidence of their predictions; integrating
uncertainty quantification into vision systems will help recognize failure scenarios and enable robust applications.

In addition to advances in Bayesian deep learning, providing practical approaches for vision problems, the workshop will
provide a forum for discussing promising research directions, which have received less attention, as well as advancing
current practices to drive future research. Examples include: the development of new metrics that reflect the real-world
need for uncertainty when using vision systems with down-stream tasks; and moving beyond point-estimates to address
the multi-modal ambiguities inherent in many vision tasks.

This years UNcertainty quantification for Computer Vision (UNCV) Workshop aims to raise awareness and generate
discussion regarding how predictive uncertainty can, and should, be effectively incorporated into models within the vision
community. The workshop will bring together experts from machine learning and computer vision to create a new
generation of well-calibrated and effective methods that know when they do not know.
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Overview...

Compositional Models



Compositional models

Figure 18: Examples of composite models
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Compositional models

- Hierarchical/composite models

- More deep GPs than deep Bayesian Neural Networks (although some thoughts

applicable)
- Such models are likely to contain “compositional uncertainty”

- Related to ideas around identifiability from statistics



Example of composition: alignment

Global matching (universal parameterization): Correspondences found

..... globally across all

S @ ~~~~~~~~~ ﬁ ' NY () examples..

7 .
%L» N>Ry va Z \ ..unique

parameterization in
parameter vector

Pairwise matching:

Consistency problem:

A—=>B—=>C—oA#]

A —— B



Example of composition: alignment

2 Components 4 Components 6 Components 10 Components 20 Components 26 Components 40 Components




Uncertainty within compositions..

- Illustration: rigid shape transformation..

input = Ry — 11 — Ry — T — output




Uncertainty within compositions..

- Illustration: rigid shape transformation..

input = Ry — 11 — Ry — T — output

Inputs Rotation 1 Translation 1 Rotation 2 Translation 2
4 » » »
2 7‘\’\. ‘\’\ % ‘\’\ g O
7 0
-2 - T T T
0o 2 4 2 4 6 0o 2 4 0o 2 4 0o 2 4

- Here under-constrained — uncertainty




Examples..

- Two layer decomposition of a chirp:

Ji(z) f2 0 f1(=)
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Examples..

- Two layer decomposition of a chirp:

Ji(z) f2 0 f1(=)
8 —
7z

6 /
4 —
2 —
0 B - 4

T T T 1 T T 1 T T

-1 0 1 —1 0 1 -1 0 1

- Three layer decomposition of a sinusoid:
fi(z) fa(z) fa(z) f2 0 fi(x) fa o f2o fi(z)

\




Background on Hierarchical/Composite/Deep GPs..

- A deep GP is a distribution over compositions of functions

f=fro...0of1
where each f; is a regular GP
- Typically we use a formulation based on the Sparse Variational GP

- Each layer maintains a set of inducing distributions ¢(U;) specified at set of
corresponding inducing locations

- The training goal is to approximate the posterior p({U; }|Y, X) with these
distributions



Doubly Stochastic Variational Inference (DSVI)

Variational approximation scheme [Salimbeni 2017] Given our data D = {Xy,yn}
we model

yn:(fLo"'ofl)(Xn)+€n

with fi ~ GP (i (), ki (-, -)) We use By ~ (fyo--- o f1)(X) to denote the evalu-
ation of the entire input data X at layer | = 2,..., L The joint distribution (with
Fo:=X)is

L

p(Y.Fp,...,F1 | X)=p(Y |Fp) [[p(Fr | Fio1)
=1

Importantly, we cannot perform the marginalisation integral as the Gaussian fac-
tors are contained inside non-linear kernels



We seek a lower bound
L
L<p(Y,Fp,....,F1 | X) = Y]FLH (Fr, | Fi_1)
We define inducing locations {Z;} and function output {U,} for each layer
L
p(Y AF 1, {U} | X, {Z}) =p(Y | Fp) H (F | F1-1,U,Zy 1) p(Uy | Zy1)

There is a specific form for the GP posteriors p(Fp, | Fi_1, Uy, Zy—1) ~ N (p;, %)

p = w(Fio1) + a(Fim) T (U = (Fizq))
S =ki(Fro1, Fi1) — a(Fioa) " ki(Zi-1, Zy—1) au(Fy—)
where oq(Fi_1) := [k1(Zi—1, Zi—1)) " ki(Zi—1, Fiy)



rre jutiuiiocu vURUtiviul Uisthivutivido urc i HitrvuutLcu
q({Ui}) = q(U1)...q(UL), ¢(Ur) ~ N (my, Sy)

The lower bound is then

L

L =Eyr,[logp(Y | Fr)] = > KL[g(U)|[p(U; | Zi-1)]
=1

The key DSVI insight is an efficient MC estimation of the expectation by marginal-
ising the inducing points {U;} from the variational posterior

L
o) =] [ »F: | U) gV aU,
=1
= q(Fr | Fr1)...q(F1 | X), with ¢(Fy | Fiy) ~ N(, %)

where fi := p(F_1) + oy(Fyoq) " (my — p(Fy_1))
Y= r(Fr1,Fr1) —oq(Fr1) T [ki(Zi1, Zooy) — Si] eu(Fyiy)



Problem with mean field inference...

- Issue with the mean field assumption (i.e. each layer modelled independently)

q({Ui}) = q(U1)...q(Uyr), ¢(U;) ~ N(my, S;)



Problem with mean field inference...

- Issue with the mean field assumption (i.e. each layer modelled independently)
q{Ui}) = ¢(U1)...q(UL), ¢(U;) ~ N(my, S))

fole) =~z f3(z) ==

f;

Input
x € [-1,1]V¥

N

filz) == -1 0 folz)=x 0 fa(z) = —z ¢ j
1 —
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Quantitative argument

- Assume DGP layers are independent { f;}
- Distribution of outputs of layer [ — 1 form uncertain inputs to layer [
- Similar to [Mchutchon 2011] we can analyse as f(x + ex)

- Consider a single input 2, we can write F; = f;{(F;_1) = fi(F;_1 +¢&;_1) where F;_;
is the mean and g;_1 denotes a zero-mean distortion

- Note, g;_1 are not necessarily Gaussian (as the marginals of a Deep GP are not
Gaussian in general). We denote the variance as o2 := V[g;_1]

- We want to show that the variance of F; increases with increasing variance of g;_4

- Therefore, unless the layers collapse, i.e. e;_1 — 0, the variance at the final F'7, will
be large and a poor fit to data



Linear approximation for layers (uncertain input)

We approximate F; = fi(Fi—1) =~ fi(Fy) + ei—q f](Fy) where fi(F;) ~
Ny, a?) (both functions of F;_1) Recalling that a GP and its derivative are

fi(E) w| | o (‘%)’D
U~ N . -
[f{(Fz)] (M l(a%)' (7)"

Computing a linear transform we have

jointly distributed

E[F; | g-1] = oy + -1y
V[F | gim1] = 07 —2e11(07) + &7, (a7)"

Using the law of total variance we have

V[F)| =E[V[F, | &-1]] + V[E[F; | £1-1]]

E[V
= &7+ o2[(@))? + (87)"] + O(ety)



[llustration of posterior variance

- The only term that can be negative for V[F;] is (a7)"

- Illustration with M linearly spaced inducing points over a range

A= [Fl,l — 3y, Fi_1 + 37v1] where 4 is the kernel lengthscale for layer L.

A M=2 M =10 B Min. value of (07)"’
1 [T I N T T T T
2.1073 —107° -
0.5 - -
_1p0-3 |
ol i 0 10
— . -1 .|
0.5 o103 | | —10
A A AAAAAAAAA
—1 &1 | 1 | 1 | | |
foo1—3y o1 Feo1 43y foo1 -3y foo1 +3y foo1—8y foo1 B +3y 9 16 23 30
M

- Minimum of (67)"” — 0 as M increases; a negative value indicates all inducing

4 Inducing point

Predicitve variance o' Second derivative (o3)"’

points are far from F;_1: this would imply a poor data fit



How do we fix this?
1. Jointly Gaussian variational distribution
q(Uy,...,UL) ~N(m,S), m € REM § ¢ REM*LM

but both expensive and tricky to evaluate
- Can make progress with a chain-like factorisation

q{Ui}) =q(Ur | Ur_q)...q(Uz | Uy)q(Uy)
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How do we fix this?

1. Jointly Gaussian variational distribution

A1
q(Uy,...,UL) ~N(m,S), m € REM  § ¢ REM*LM
w7
but both expensive and tricky to evaluate &A% %
- Can make progress with a chain-like factorisation &A44

q{Ui}) =q(Ur | Ur_q)...q(Uz | Uy)q(Uy)

2. Inducing points as inducing locations; that is U; — F% ~ (fio -+ o f1)(Z)
- Thus the inducing outputs of the previous layer are the inducing locations for the next

L V7
1)
L:=E logp(Y | Fr)| — > E_ gz, (pz \ |log
s g (Y [ F)l =2 “Fl)q(m[ p(FZ [ FZ )

- Efficient estimation procedure in O(LN M?)



1
DSVI

Jointly Gaussian 1
inducing points

Inducing points as 1
inducing locations

f1(z) (sq-exp kernel) f2(z) (periodic kernel) (f20 f1)(=)
‘ 1 1
i 0 0
| -1 -1 [
= T 1 1 T
0 0
-1 0 i 0 i




Inducing points as
inducing locations

-1

f1(z) (monotonic flow) f2(z) (sq-exp kernel) (f20 f1)(z)
T ) 1 T 1
0 0 ...-m.-.' ._.-'-,..' .. ; .’.*"'..
I~ - ..-
‘ -1 | -1
‘ 1 ‘ 1
0 0 e o™
- ‘.-
‘ -1 -1




Application: Alignments

- Multi-task Learning: misalignment
hinders ability to learn correct
correlations between tasks
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Application: Alignments

- Multi-task Learning: misalignment
hinders ability to learn correct
correlations between tasks

- Previous approaches:

- Only model fixed alignment

- a-priori knowledge of task correlations

- either probabilistic or monotonic
alignment but not both

Observed data

Aligned data




Monotonic process for temporal alignment

- Temporal warping must not permute time
- Compromises required for existing monotonic GPs

- Propose ODE-based Monotonic GP Flow

g(x) =u(r=T;x) = /OTw(u(T)) dr

ODE: du = w(u)dr,
Uncertain drift function: w(u) ~ GP(0, ky(u, u))

- ODE solution g(z) is monotonic wrt the initial condition u(7 = 0) := x

- Efficient path-wise GP sampling to solve [Terenin 2021]
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Aligned Multi-Task GP

Our model: Fully Bayesian multi-task learning
for misaligned data

Latent corr.  zj ~ N(zj|0,1q)
ODE Drift  wj ~ GP(w; |0, Ku,(uj, uj))
Warp  g;|x;, w; ~ Monotonic Process(g; | x;, w;)
Function f|z,g~ GP(f|0,Ky(zj,z) ® Ko(8jn,8j7,n))
Noisy data y|f ~ N (y|f, 3 1)

J

=
Slfo

J

4
f

N

Joint prob.: p(y,f,z,g w|X) = p(f|z,8) [[ r(gj| %, w) p(w;) p(z;) [] PLin | n)

j=1

n=1




Aligned Multi-Task GP
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(a) Observations and data fit

(b) Aligned multi-task GP

(c) Uncertainty in the warps
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Where to next?




Is unsupervised learning a thing?

Generative models

Structured Uncertainty Prediction Networks (SUPN)
SUPN as a prior for inverse problems
Compositional Models

Where to next?

Thanks!



Centre for the Analysis of Motion,

Entertainment Research and-Applications
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Thanks!




Thanks! https:/ /www.ndfcampbell.org n.campbell@bath.ac.uk

Joint work with Era Dorta, Margaret Duff, lvan Ustyuzhaninov, leva Kazlauskaite, Markus Kaiser, Erik Bodin, Ivor
Simpson, Sara Vicente, Lourdes Agapito, Matthias Ehrhardt, Tony Shardlow, and Carl Henrik Ek. Thanks to the
EPSRC CAMERA Research Centre, the Centre for Digital Entertainment and SAMBa CDTs, and the Royal Society.
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