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Common Questions?

What questions do we have about ML?

- Can | use ML to solve z?

- What does ML actually do?

- Isn't ML just the same as y?

- Can | replace myself/my research team with ML?

- How much data do | need?

- Can | just use Deep Learning/Generative Al/ChatGPT?

- Surely Deep Learning/Generative Al/ChatGPT is all hype?
- Can any of this be used for science/engineering?
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Machine Learning illustration

- https://playground.tensorflow.org/
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Machine Learning illustration
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Machine Learning illustration

What if we use a probabilistic approach?

Test 0 Output (LB = -17.34130392586988)

Test 1 Output (LB = -35 984) Test 2 Output (LB = -51.29994757854338)
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We need to consider properties of
Machine Learning approaches
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Ambiguity..
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Average vs Worst Case: Explicitly accounting for imbalance..
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Understanding Deep Learning

SIHON J. B. PRINCE

Excellent new text book from Simon Prince (visiting Prof in Bath for semester 1):
Understanding Deep Learning, Simon J.D. Prince, MIT Press

Final draft available on the website: https://udlbook.github.io/udlbook/
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Bayesian Machine Learning

- Bayes' Rule

Likelihood (of event) x Prior Probability (before)

Posterior Probability (after) = .
Evidence




Example of Bayes’ Rule..

- Consider a legal trial..

Likelihood Prior

p(observations | guilt) x p(guilt)

uilt | observations) =
plauit| ) p(observations)
| —

Posterior
Evidence

p(A | B) means “probability of A being the case given that B occurs”



Example of Bayes’ Rule..

- Consider a legal trial..

Likelihood Prior

p(observations | guilt) x p(guilt)

Zp(observations | guilt) p(guilt)
guilt

p(guilt | observations) =

Posterior

Evidence

p(A | B) means “probability of A being the case given that B occurs”
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door with car = pick_random({1, 2, 3})
door_with_goat = {1, 2, 3} - door_with_car

door_picked = pick_random({1, 2, 3})

g W N

6 if door_picked == door_with_car:

door_to_open = pick_random(door with goat)
else:
9 door_to_open = door_with_goat - door_picked

e}



Monty Hall: How would we generate data (or simulate)?

1 door_with car = pick_random({1, 2, 3}) # 1/3 equal chance
2 door_with_goat = {1, 2, 3} - door_with_car
3
4 door_picked = pick_random({1, 2, 3}) # 1/3 equal chance
5
6 if door_picked == door_with_car:
door_to_open = pick_random(door with goat) # 1 times in 3
3 else:

9 door_to_open = door_with_goat - door_picked # 2 times in 3



Consider Modelling and ML as a
Generative Process



Bayes’ Rule with models and functions..

Likelihood Prior

observed data | functions) x p(functions
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Likelihood
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p(observed data | functions) x p(functions)

p(observed data)

Posterior
Evidence

Likelihood Prior

(D] f)xp(f)

p
p(f|D)=——"—— pD)=) pD|f)p
(412) D) @)= p@ 112
Posterior N~

Evidence

Data D = {X, Y}, pairs of inputs {z, } and outputs {y, }, and functions f



Bayes’ Rule with models and functions..

Likelihood Prior

observed data | functions) x p(functions
p(functions | observed data) = o | ) xp( )

p(observed data)

Posterior
Evidence

Likelihood Prior

p(f | D) = PPLD X)) S~ up | ) p()
f

Posterior N~
Evidence

Data D = {X, Y}, pairs of inputs {z, } and outputs {y, }, and functions f

Average over functions to predict unknown output ¢* for a new input x*:

p(y* |z, D) = Zp | 2%, f)p(f | D)



Prior over functions...
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Combine prior with data...
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Combine prior with data...
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Average over functions to predict...
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Averaging over functions gives us (Epistemic) Uncertainty!
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- How much data do we need?

- Might not be the right question..
- What can we actually say?




Science (and Machine Learning) cannot
prove things to be true via data



Science (and Machine Learning) cannot
prove things to be true via data

we can only demonstrate that things
are inconsistent with data
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Model selection illustration: Gravity!

Stable Diffusion: “Drop cannonball and

orange off the leaning tower of Pisa.”

Apollo 15 Hammer-Feather Drop

NASASolarSystem 0 48K
14.9K subscribers

op A Share
576K views 8 years ago

Atthe end of the last Apollo 15 moon walk, Commander David Scott (pictured above) performed
a live demonstration for the television cameras. He held out  geologic hammer and a feather
and dropped them at the same time. Because they were essentially in a vacuum, there v ...more



Bayes’ Rule for model selection..

Likelihood Prior

——
p(D | w) x p(w)

p(w | D) =
D=
Posterior S—~—

Evidence

Data D = {X, Y}, input/output pairs, and parameters w



Bayes’ Rule for model selection..

Likelihood under model Prior

D |w, M =m)xp(w, M =m)
p(D | M =m)
—_— —————

Evidence for model

p(w | D, M =m) = o

Posterior under model

Data D = {X, Y}, input/output pairs, and parameters w for Model M = m



Bayes’ Rule for model selection..

Likelihood under model Prior

p(D | w, M = m) x p(w, M = m)
p(D | M =m)
—_————

Evidence for model

p(w | D, M =m) =

Posterior under model

Data D = {X, Y}, input/output pairs, and parameters w for Model M = m

Evidence for model Prior for model
DM — 1) X (M —
p(M =m|D) = il m) X p(M = m)
Posterior for model —

Data



Bayes’ Rule for model selection..

Likelihood under model Prior

p(D | w, M = m) x p(w, M = m)
p(D | M =m)
—_———

Evidence for model

p(w | D, M =m) =

Posterior under model

Data D = {X, Y}, input/output pairs, and parameters w for Model M = m

Evidence for model Prior for model
p(M =m ]D):p( |/ m) x p(M =m)
— p(D)
Posterior for model ~—~—
Data

If prior over models is equal, we compare via the Evidence for the Model: p(D | M = m)



Model selection example

Fitting polynomial models to data under Gaussian noise, &, ~ N (0, 02):

Model 1
Model 2
Model 3
Model 4 :
Model 5 :

Parameters wy, = [ag, ...

“Yn
S UYn
“Yn

Yn
Yn

=aptaixry, +epn

= ap + a1z, + agr® +ep

=ag + ar1xy + CLQQZZ + CL3333 +én

= ag + a1z, + agx® + azx® + a2t + ¢,

= ap + a1z, + aox? + azz® + agxt + azz’ + ¢,

, @] for model m, wherem € [1, ... ,5].



Model selection example
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Model selection example (more noise)

Posterior Model Probability
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Correlation is not Causation
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Danger Batman..


https://tylervigen.com/spurious-correlations

Danger Batman..

Movie appearances

LR

The number of movies Nicolas Cage appeared in

correlates with
The number of MRI technicians in North Dakota
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Danger Batman..

Degrees awarded

Bachelor's degrees awarded in Engineering

correlates with

Electricity generation in Cambodia
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“Correlation is not Causation”

- Do we need causation?
- Is science not just correlation?



“Correlation is not Causation”

- Do we need causation?
- Is science not just correlation?

Importance simultaneously undervalued and overestimated?

D







Objectivity..

ving in the multiverse
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[Andrew Gelman: “Crimes against Data”]
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- Well we all know what the difference is..
- e.g. Atmospheric pressure and barometer needle reading

Formal definitions tricky but:
An object is the cause of another ...

“if the first object had not been, the second never had existed”

[David Hume, Enquiry Concerning Human Understanding, 1748]

+ Introduces the idea of a counterfactual
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- We never get to observe the counterfactual :~(

- Could the counterfactual possibily occur?

- All the time inside our heads!
- What if I'd bought some tasty chocolates for Neill?
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So we are all done?
Problems with counterfactuals..
- We never get to observe the counterfactual :~(

- Could the counterfactual possibily occur?

- All the time inside our heads!
- What if I'd bought some tasty chocolates for Neill?

- Philosophical difficulties/objections..
- Can we approximate the counterfactual?

- Lots of the time in science — the Randomised Control Trial (RCT)!
- Exciting question: what if we can't do RCT?

- Can we use ML to estimate the counterfactuals? Possibly!
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ML for Causation: Pearl's “Ladder of Causation”..

3. COUNTERFACTUALS
ACTIVITY:  Imagining, Retrospection, Understanding
QUESTIONS: 7t f 1 hud doe .2 W
(Was it X that caused Y7 What f X had not
occurred? Whatf T had acted differcntly?)
EXAMPLES:  Was it the aspicin that stopped my headache?
‘Would Kennedy be live if Oswald had not
Killed him? What i 1 had not smoked for the

2. INTERVENTION
ACTVITY:  Doing, Intersening
QUESTIONS: W 1.2 Hor?

- (What would Y beif 1do X2
How can T make Y happen?)

16 1 take aspiin, will my headache be curcd?
What i we ban cigarettes?

1. ASSOCIATION
ACTIVITY:  Sccing, Observing
QUESTIONS:  I7hatf 1e .0

(How e the variables relred?
Hows would secing X change my belef in Y7)

EXAMPLES:  What docs a symprom tell me about a discase?
What does a survey el us about the
cection tesls?

[Pearl and Mackensie 2017]



u

ML for Causation: Pearl's “Ladder of Causation”..

3. COUNTERFACTUALS
ACTIVI

Causal reasoning

cannot be answered
by data alone we will

need a model as well!

[Pearl and Mackensie 2017]



[llustration: Disease treatments

- Two disease treatments (surgical/non-surgival for kidney stones)

Positive Outcome
Treatment A 273/350 = 78%
Treatment B 289/350 = 83%



[llustration: Disease treatments

- Two disease treatments (surgical/non-surgival for kidney stones)

Positive Outcome  Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93% 192/263 =73%
Treatment B 289/350 =83%  234/270=87% 55/80 = 69%

- What's going on?



[llustration: Disease treatments

- Two disease treatments (surgical/non-surgival for kidney stones)

Positive Outcome  Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93% 192/263 =73%
Treatment B 289/350 =83%  234/270=87% 55/80 = 69%

- What's going on?
- Not a fair RCT: uneven allocation of patients



[llustration: Disease treatments

- Two disease treatments (surgical/non-surgival for kidney stones)

Positive Outcome  Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93% 192/263 =73%
Treatment B 289/350 =83%  234/270=87% 55/80 = 69%

- What's going on?
- Not a fair RCT: uneven allocation of patients

The stone size S
is a confounder:



[llustration: Disease treatments

- Two disease treatments (surgical/non-surgival for kidney stones)

Positive Outcome  Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93% 192/263 =73%
Treatment B 289/350 =83%  234/270=87% 55/80 = 69%

- What's going on?
- Not a fair RCT: uneven allocation of patients

RCT would

The stone size S
remove the

is a confounder:
confounder:



[llustration: Disease treatments

Positive Outcome Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93%  192/263 =73%
Treatment B 289/350 =83%  234/270=87%  55/80 =69%

RCT would
remove the

The stone size S

is a confounder:
confounder:



[llustration: Disease treatments

Positive Outcome Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93%  192/263 =73%
Treatment B 289/350 =83%  234/270=87%  55/80 =69%

) RCT would
The stone size S
) remove the
is a confounder:
confounder:

p(A | B) means “probability of A being the case given that B occurs” by observation alone

p(Y | T) =) p(Y | $,T)p(T | S)p(S) / p(T



[llustration: Disease treatments

Positive Outcome Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93%  192/263 =73%
Treatment B 289/350 =83%  234/270=87%  55/80 =69%

) RCT would
The stone size S
) remove the
is a confounder:
confounder:

p(A | B) means “probability of A being the case given that B occurs” by observation alone

p(Y | T) =) p(Y | $,T)p(T | S)p(S) / p(T

Probability of outcome Y given intervening with treatment T is p(Y | do(T"))



[llustration: Disease treatments

Positive Outcome Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93%  192/263 =73%
Treatment B 289/350 =83%  234/270=87%  55/80 =69%

) RCT would
The stone size S
) remove the
is a confounder:
confounder:

p(A | B) means “probability of A being the case given that B occurs” by observation alone

p(Y | T) =) p(Y | $,T)p(T | S)p(S) / p(T

Probability of outcome Y’ given intervening with treatment T'is p(Y | do(T"))
p(Y | do(T ZPYS\dO ZPY\SdO( )) p(S)



[llustration: Disease treatments

Positive Outcome Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93%  192/263 =73%
Treatment B 289/350 =83%  234/270=87%  55/80 =69%

) RCT would
The stone size S
) remove the
is a confounder:
confounder:

p(Y | do(T ZPYS\dO ZPY\SdO( )) p(S)



[llustration: Disease treatments

Positive Outcome Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93%  192/263 =73%
Treatment B 289/350 =83%  234/270=87%  55/80 =69%

‘ RCT would
The stone size S
. remove the
is a confounder:
confounder:
p(Y | do(T ZPYS\dO ZPY\SdO( )) p(S)

81357 192343

p(Y | do(T=a)) = Zp(Y | S,do(T'=a))p(S) = 7700 + 563700 = 83%



[llustration: Disease treatments

Positive Outcome Small Stones Large Stones
Treatment A 273/350 = 78% 81/87 =93%  192/263 =73%
Treatment B 289/350 =83%  234/270=87%  55/80 =69%

‘ RCT would
The stone size S
. remove the
is a confounder:
confounder:
p(Y | do(T ZPYS\dO ZPY\SdO( )) p(S)

81357 192343

p(Y | do(T=a)) = Zp(Y | S,do(T'=a))p(S) = 7700 + 563700 = 83%

p(Y | do(T=b)) =) p(Y | S,do(T'=0)) p(S) = 78%



Causality

- Statistical/Probabilistic reasoning alone cannot support causal inference

- Determining the joint probability distribution of variables says nothing about
causation

- Causal Inference: promises to determine the necessary set of (non-data)
assumptions sufficient to make a causal conclusion

[Thanks to Julian Faraway for Causal Illustrations]
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Conclusions

Did we answer any of the questions?

- Can | use ML to solve z?

- What does ML actually do?

- Isn't ML just the same as y?

- Can | replace myself/my research team with ML?

- How much data do | need?

- Can | just use Deep Learning/Generative Al/ChatGPT?

- Surely Deep Learning/Generative Al/ChatGPT is all hype?
- Can any of this be used for science/engineering?
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Conclusions

Need to think about what we really want..

- Computationally efficient look-up table
- e.g have loads of data that spans the space
- Could use deep learning

- Need data efficiency / care about uncertainty
- e.g. clinical/safety applications
- Need a Bayesian method

- Want to analyse scientific results
- e.g. does my new model explain dark matter
- Need causal inference



Conclusions

Loads of gotchas..

- Availability (using the data you have not the data you need)
- Evaluation measure (is a human baseline sensible?)

- lgnore uncertainty/error bars

- Sample / dataset bias

- Bias / variance trade-off

- Haven't spoken about Decision Theory

- Lots to talk about regarding Causality

- “All models are wrong but some models are useful”



That's all folks..



Al Talks: Al & ML Research Group, Department of Computer Science

11 Oct 2023 Prof Simon Prince
Understanding Deep Learning: The Technology Behind Modern Al
15 Nov 2023 Prof Nello Cristianini
The Shortcut: How Machines Became Intelligent Without Thinking in a Human Way
13 Dec 2023 Prof Mike Tipping
The Irresistible Rise of Machine Learning
28 Feb 2024 Prof Neill Campbell
No Free Lunches in Machine Learning
20 Mar 2024 Prof Ozgiir Simsek
Reinforcement Learning and the Pursuit of Artificial Intelligence
17 Apr 2024 Dr Harish Tayyar Madabushi
Emergent Abilities of Language Models: Do they pose an existential threat?
8 May 2024 Prof Darren Cosker
Al for Human Sensing: Research, Productisation and Ethics
TBD Prof Mike Tipping

Bayesian Inference in Machine Learning: Indistinguishable from Magic?
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