Structured Uncertainty Prediction Networks

[Dorta et al. CVPR 2018]

Problem: VAEs produce overly smooth output..

- Fails to capture all the **details** in the data
- Factorised Gaussian (e.g. L2 or diagonal loss) deals with the failures by averaging them across pixels (smoothing)

Problems with the diagonal noise model..

- Factorised noise assumption does not hold for images
- Seen by sampling from the likelihood (e.g. diagonal Gaussian)...

reconstruction (mean), diagonal variance

draw from noise model

• The random draw does not match the data

What if we use a structured noise model?

- Instead predict a structured covariance matrix (from latent space)
- We can draw samples to compare...

reconstruction (mean), structured covariance

draw from structured noise model

• A random draw captures the statistics of the input data!

Structured uncertainty prediction network

$$p_{\boldsymbol{\theta}}(\mathbf{x} | \mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{z}), \boldsymbol{\Sigma}_{\boldsymbol{\psi}}(\mathbf{z})).$$

Tractable via sparse connectivity

• Parameterise the precision matrix $\Sigma^{-1} = \mathbf{L} \mathbf{L}^{^{\mathrm{T}}}$ for efficiency

$$\min_{\boldsymbol{\psi}} \log \left(\left| \boldsymbol{\Sigma}_{\boldsymbol{\psi}} \right| \right) + \left(\mathbf{x} - \boldsymbol{\mu} \right)^{\mathsf{T}} \left(\boldsymbol{\Sigma}_{\boldsymbol{\psi}} \right)^{-1} \left(\mathbf{x} - \boldsymbol{\mu} \right)$$

Connectivity

		_														
_																
	_															
		_			_											
						_	_									
			H													
			H													
								Ξ	Ξ		Ξ					
												Ξ				

Long range correlations from sparse precision..

Reconstructions on celebA dataset..

_	Model	NLL	$-\log p(\mathbf{x} \mid \mathbf{z})$
	VAE [1]	-5378 ± 931	-6079 ± 936
	Ours	-7753 ± 1323	-8386 ± 1339

Reconstruction variation

What about the noisy projection evaluation?

Model	\mathbf{MSE}	PSNR	\mathbf{SSIM}
DAE	0.005 ± 0.003	28.89 ± 1.69	0.90 ± 0.03
Ours	$\boldsymbol{0.003} \pm \boldsymbol{0.001}$	31.38 ± 0.92	$\boldsymbol{0.92}\pm\boldsymbol{0.02}$

But what about the noisy projection evaluation..

Limitations

- Lack of proper predictive posterior in the VAE latent space
- Difficult to know where to draw samples from:

Limitations

- Standard NN caveats apply..
 - What happens away from the training data?
 - Constraints on the function?
 - True epistemic uncertainty?
- Likelihood function only works for the category trained on..