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Abstract

Shape models have been used extensively to regularise
segmentation of objects of interest in images, e.g. bones in
medical x-ray radiographs, given supervised training ex-
amples. However, approaches usually adopt simple linear
models that do not capture uncertainty and require exten-
sive annotation effort to label a large number of set tem-
plate landmarks for training. Conversely, supervised deep
learning methods have been used on appearance directly
(no explicit shape modelling) but these fail to capture de-
tailed features that are clinically important.

We present a supervised approach that combines both
a non-linear generative shape model and a discrimina-
tive appearance-based convolutional neural network whilst
quantifying uncertainty and relaxes the need for detailed,
template based alignment for the training data. Our
Bayesian framework couples the uncertainty from both the
generator and the discriminator; our main contribution is
the marginalisation of an intractable integral through the
use of radial basis function approximations. We illustrate
this model on the problem of segmenting bones from Pso-
riatic Arthritis hand radiographs and demonstrate that we
can accurately measure the clinically important joint space
gap between neighbouring bones.

1. Introduction

Psoriatic Arthritis (PsA) is an inflammatory disease that
affects the joints of the hands and feet. Radiographic as-
sessment of joint damage is an essential part of PsA diag-
nosis and treatment, during which each joint of the hand
is manually “scored” (a visual assessment) for damage us-
ing standardised techniques [16, 22, 29, 31] (see Figure 1
for an illustration). This task is both time consuming and
has a high variance in quality due to the subjective eval-
uation of clinicians; consequently computer vision meth-
ods aimed at speeding this process up have been investi-
gated [10, 11, 18, 28].

Previous work has considered the use of appearance-

Figure 1. The right Figure (courtesy of Tillett et al. [25]) shows
a distal interphalangeal joint suffering from erosion, joint space
narrowing (JSN) and osteoproliferation. The figure on the left
shows the joint space being measured through the use of bounding
curves.

based Neural Network models (NNs) to detect damage in
x-rays [18, 23]. However, these approaches tend to under-
perform due to the imbalances in datasets towards healthy
examples; they struggle to detect damage that manifests
as fine-scaled features. Consequently, they have been ob-
served to be better at detecting extreme examples [6]. It
is easier to extract shape information than it is to inter-
pret fine scale texture information. Hence, models that ex-
plicitly combine shape and appearance have had more suc-
cess at detecting geometric shape features than their deep
learning counterparts had at detecting texture based fea-
tures [10, 11, 28]. More recently, clinical studies have been
performed to assess methods relying on shape and appear-
ance [13, 21].

We wish to combine appearance-based NNs and Statisti-
cal Shape Models (SSMs) to measure joint space, as shown
in Figure 1, by segmenting bones in a planar x-ray radio-
graph. Shape tends to express itself through long range
correlations; these are difficult to capture solely by pixel
based models that assume a much shorter correlation range.
Hence, segmentation methods that rely solely on appear-
ance based NNs are not very good at capturing shape in-
formation. Shape models, on the other hand, are better at
extracting fine-scale shape information, but still require the



use of texture information to ensure accurate fitting. We be-
lieve that better performance can be achieved when used
alongside deep networks which have been shown to dis-
criminate and model texture well [19, 27, 30].

Capturing the uncertainty in the output of a model is crit-
ically important in a medical application (to support down-
stream clinical decision making) and is one of our primary
goals in this paper. We consider the problem of error prop-
agation from both the SSM and the deep learning network.
We propose to view the whole problem from a Bayesian
viewpoint, where we wish to integrate out model parame-
ters at fitting time; we use a Radial Basis Function (RBF)
approximation to tackle the intractable integral arising from
such a formulation.

The marginalisation we perform requires neither the
shape model nor the deep learning network to themselves
be the result of a Bayesian model, but rather assumes that
we have some measure of uncertainty in both of their out-
puts. It is this error that we wish to propagate in the fitting
step of our model.

Established statistical models of shape and appearance
(e.g. Active Shape Models [4]) assume a generative model
as the result of a linear mapping from some learned latent
space. This assumption can be relaxed, in which case a
lower dimensional latent space is able to represent a richer
variety of shapes [8]. We hence use a Gaussian Process La-
tent Variable Model (GPLVM) [12] as a statistical model of
shape.

A second problem we look at is that of data annotation.
SSMs usually require careful placement of landmarks on
images for training. We propose to treat shape as a contin-
uous curve in 2D. This allows us to align landmarks based
on their geometric information. Annotation then becomes
an exercise of delineation which can be faster and more ro-
bust than landmark placement; this saves time and cost for
annotation from trained clinical experts.

We provide related work and background information in
section 2, where we introduce both the way shape mod-
els are fitted to images, and also GPLVMs and how they
can be used as shape priors. Section 3 presents our model,
which we refer to as a Active Latent Space Shape Model
(ALSSM). We perform the marginalisation of model pa-
rameters in section 3.2 and provide error estimates in sec-
tion 3.3. We then show experimental results in section 4;
these consist of a 10-fold validation exercise where we anal-
yse the effect of the appearance discriminator and the shape
model on the accuracy of the model output when compared
to ground truth.

2. Related Work and Background
Statistical Shape Model Fitting: We consider a continu-
ous image intensity function u : R2 → [0, 255] having edge
set Γ. The edge set is defined as the jump set of u and man-

ifests itself as areas of high gradients in u. The boundaries
of objects of interest (i.e. bones) tend to be a subset of Γ.

The SSM of Cootes et al. [4] generates a shape vec-
tor F = (x0, y0, ..., xD−1, yD−1) representing a discre-
tised curve with discretisation number D bounding an ob-
ject of interest. In the literature, this vector can be aug-
mented to include texture information uuud around the spatial
points (xd, yd), d ∈ [0, D), in which case, these are re-
ferred to as Active Appearance Models (AAMs) and F =
(x0, y0,uuu0, ..., xD−1, yD−1,uuuD−1). Without loss of gener-
ality, we assume F ∈ RP , where P = 2D in the case of
SSMs. The linear shape generation process is learned from
training data Z ∈ RN×P consisting of N discretised curve
outlines and is given by

F = z̄zz +

Q−1∑
q=0

tqvvvq , (1)

where z̄zz is the mean feature vector and vvvq are the Q orthog-
onal variation modes or eigenvectors of 1

N (Z− Z̄)t(Z− Z̄).
ttt = (t0, ..., tq−1) can be thought of as a latent variable that
gets mapped linearly onto shape or appearance space.

Shape models are trained on data that is made invari-
ant to similarity transforms. The fitting step also involves
a similarity transform T . Generally, statistical appearance
and shape models are fitted to new images by minimising a
cost function of the form

D−1∑
d=0

Vu
(
T ◦ (xd, yd),uuud

)
, (2)

where Vu(·) is some potential, with respect to the latent
space parameter and the pose parameters. When dealing
purely with shape models, we consider the edge potential
Vu : R2 → R is given by

Vu(x, y) ∝ log (P{(x, y) ∈ Γ}) (3)

that is minimal at locations along the edge set Γ and in-
creases away from Γ.

The model fitting relies on gradient updates that are local
in nature. Hence, model parameter initialisation, in particu-
lar those relating to pose, becomes very important. This is
the main barrier to completely automating shape model fit-
ting. Object positioning can be inferred from global search
methods to help with this initialisation in datasets that have
a strong prior on object placement in images [3, 7].

Aligned Training Data: The training data for SSMs con-
sist of coordinates or landmarks {xd, yd}, for each of N
examples, that need to be in precise alignment. This makes
the data annotation process expensive, especially in cases
where the number of coordinates D needs to be high in or-
der to capture fine scale features. One way to make this



process faster is to instead perform the landmark alignment
after the data annotation process; Campbell et al. [2] per-
forms this, for font outlines, through an energy based align-
ment of training landmarks which considers the geometric
shape features.

Uncertainty Quantification: The Probabilistic Appear-
ance Model of Kruger et al. [9] is an example of work that
seeks to incorporate uncertainty quantification. The fitting
step is interpreted as a Bayesian one and a Maximum a Pos-
teriori (MAP) solution is found for the pose and model hy-
per parameters. The appearance is treated as a Gaussian
with mean given by z̄zz+

∑Q−1
q=0 tqvvvq . The cost function being

minimised while fitting the appearance model to a template
is essentially L-2 in nature through the use of Gaussian dis-
tributions that model the interaction between the shape and
its latent space parameters.

For an image u, our proposed solution to the Bayesian
problem of fitting an appearance or shape model with latent
parameters ttt and pose parameters T , is the minimiser of the
marginal log-likelihood given by log p(u | ttt, T ); we seek the
set of appearance or shape parameters ttt and pose parameters
T that best explain the observed image.

The marginal log-likelihood is an expectation that con-
stitutes an integral made intractable by the edge potential.
In the literature, this is usually addressed by approximating
the posterior distribution with some variational distribution
that makes the integration tractable. The optimal form of
the variational distribution is one that is proportional to the
posterior. As far as we are aware, there are no explicit error
estimates for this approximation. We believe that this can be
solved for our case by instead approximating the intractable
integral with a Radial Basis Function (RBF) expansion.

GPLVMs and Shape Modelling: GPLVMs [12] are
probabilistic generative models. They assume that data zzz ∈
RP is generated non-linearly from a latent variable ttt ∈ RQ
existing in some learned latent space through zzz = g(ttt) + ε.
Here, g(·) ∼ GP is a zero mean Gaussian Process with in-
dependent and identically distributed outputs having covari-
ance kernel κθ(·, ·) and ε is zero mean Gaussian noise with
variance β−1. The latent point parameters T = [..., tttn, ...]
for the N training data points are found by minimising the
negative marginal log-likelihood given by

L(T, θ) =
PN

2
log(2π)+

P

2
log |K|+ 1

2
tr(K−1ZZt) (4)

where Ki,j = κ(ttti, tttj) + 1
β I
j
i and θ are the kernel hyper-

parameters. GPLVMs have been shown to perform well
as generative models of parametric curve representations of
shape [2, 15]. Priscariu et al. [15] use the GPLVM posterior
mean

µµµpost(ttt) = κ(T, ttt)tK−1Z ∈ RP . (5)

FF tttttt

MM TT

uu

Figure 2. The generative ALSSM. The latent space parameters ttt
generate a shape F; this is transformed by T using the pose pa-
rameters to get a curve M that interacts with the edge potential
Vu(·). The arrows shows the interdependencies of each variable.
We perform the marginalisation of F and M in section 3.2.

to regularise a level set segmentation task. Di Martino et
al. [5] investigates the use of GPLVMs as generative mod-
els of shape when operating on the pixel domain and show
that better performance can be achieved when GPLVMs are
paired with Deep Belief Networks.

3. ALSSM
3.1. Model Set-up

The Active Latent Space Shape Model consists of
a shape generation process from the latent space vari-
ables ttt. The generated shape F is transformed via
a similarity map T and matched to the shape M =
(xM

0 , y
M
0 , ..., x

M
D−1, y

M
D−1) present in an image u. These are

related to each other via the graphical model in Figure 2 that



constitutes the following conditional distributions.

Prior on shape: We use a GPLVM to model the inter-
action between the shape and the latent space. Thus, the
shape prior p(F | ttt) is the predictive posterior from the
trained GPLVM; it takes the form of a Gaussian with mean
µµµ(ttt) = (xt0, y

t
0, .., x

t
D−1, y

t
D−1) and covariance matrix vari-

ance σ2(ttt) IQ. For a GPLVM trained on data Z with latent
space positions T, these are

µµµ(ttt) = κ(T, ttt)t(K + β−1IN )−1Z ∈ RP , and

σ2(ttt) = κ(ttt, ttt)− κ(T, ttt)t(K + β−1IN )−1κ(T, ttt).
(6)

Data Likelihood: For ease of notation, we define

fu(x, y) := exp (−Vu(x, y)) . (7)

We set p(u |M) =
∏D−1
d=0 p(u |xM

d , y
M
d ). We use a discrim-

inative texture model

p(xM
d , y

M
d |u) = fu(xM

d , y
M
d ) (8)

that computes the probability of the coordinates (xM
d , y

M
d )

being in the edge set Γ as per equation (3). We can invert
this probability using Bayes Theorem. Setting p(xM

d , y
M
d ) to

be the uniform distribution on the image domain, we have

p(u |M) ∝ exp

(
−
D−1∑
d=0

Vu(xM
d , y

M
d )

)
. (9)

We define Vu(x, y) to be the minimum distance between
(x, y) and the image edge set Γ. To obtain the edge set, we
use a U-net region discriminator as described in section 4.3.

Shape Matching Term: This compares the curve appear-
ing in the image to a transformed version of the generated
shape using a Gaussian given by

p(M |F, T ) =

D−1∏
d=0

N
(
(xM
d , y

M
d ) | T ◦ (xd, yd), γ

2I2
)
.

(10)
The term γ2 captures the error present in trying to discern
the shape appearing in the image.

Whole Model: We seek to maximise

p(u | ttt, T ) =

∫∫
p(M,F, u | ttt, T ) dF dM

=

∫∫
p(u |M) p(M |F, T ) p(F | ttt) dF dM ,

(11)

where we assume that the shape parameters are independent
to the pose parameters. This is similar to the minimisation
performed by Kruger et al. [9].

3.2. Bayesian Marginalisation

Marginalising F and M in the model in Figure 2 allows
us to capture the errors from each distribution. In this sec-
tion, we show that by approximating p(u |M) with a linear
combination of Gaussians, we find that the final cost func-
tion is p(u |M) convolved by a Gaussian and evaluated at
the transformed coordinates T ◦ (xtd, y

t
d). We denote the

convolution of a function f with a Gaussian with mean zero
and variance σ2 as f ?Nσ2 .

With the above distributions for p(M |F, T ) and
p(F | T ), and denoting Fd = (xd, yd), Md = (xM

d , y
M
d ) and

µd(ttt) = (xtd, y
t
d), equation (11) becomes

p(u | ttt, T )

∝
D−1∏
d=0

∫
fu(Md) p(Md |Fd, T ) p(Fd | ttt) dFd dMd (12)

∝
D−1∏
d=0

∫
fu(Md)N

(
Md | T ◦ µd(ttt),

(
γ2 + σ2(ttt)

)
I2
)

dMd

where p(u |Md) makes the above integral intractable.
By definition, the values of fu(Md), on the image lattice

{Xh ∈ R2 : h = 0, ...,H − 1}, are known. Here the im-
age lattice are the uniformly spaced locations at which the
image intensity is sampled. We can therefore approximate
it using an RBF interpolant of the form

I(Md) =

H−1∑
h=0

whψh(Md) (13)

where ψh(Md) = N
(
Md | Xh, v2I2

)
and wh are scalar

weights. This approximation of fu(Md) by a Gaussian al-
lows us to marginalise Md; we perform the same marginal-
isation as in equation (12), but now with the interpolant in
lieu of fu(Md):∫

I(Md)N
(
Md

∣∣ T ◦ µd(ttt), γ2 + σ2(ttt)
)
dMd (14)

=

H−1∑
h=0

wh

∫
ψh(Md)N

(
Md

∣∣ T ◦ µd(ttt), γ2 + σ2(ttt)
)

dMd

=

H−1∑
h=0

wh√
2π(v2 + γ2 + σ2(ttt))

exp

(
−‖T ◦ µd(t

tt)−Xh‖2

2(v2 + γ2 + σ2(ttt))

)
.

Noting that

ψh?Nσ2(ttt)+γ2(·) = N (· | Xh, (v2+γ2+σ2(ttt))I2) , (15)

due to the linearity of the convolution operator, equa-
tion (14) is the convolution of I with a zero mean Gaussian
with variance σ2(ttt) + γ2, that is

I ?Nσ2(ttt)+γ2(T ◦ µd(ttt))

=

∫
I(Md)N

(
Md

∣∣ T ◦ µd(ttt), γ2 + σ2(ttt)
)

dMd .
(16)



Figure 3. The ALSSM output is given in green. From top to bot-
tom the bones of the right index fingers are the distal phalanx
(DP), the middle phalanx (MP), the proximal phalanx (PP) and the
metacarpal (MC); and the joints between these are the distal inter-
phalangeal joint (DIP), the proximal interphalangeal joint (PIP),
and the metacarpophalangeal joint (MCP).

The final integral can thus be approximated using the result
fu(·) ?Nσ2(ttt)+γ2(T ◦ µd(ttt)).

3.3. Analytical Error Estimates

The error is split into two parts and comes from each
RBF expansion. Rambojun et al. [17] show that the er-
ror from each part goes to zero as the discretisation H of
the image lattice goes to infinity. Hence, this approxima-
tion works well for high resolution images. We provide a
summary of the argument made by Rambojun et al. [17] in
Appendices D and E in the supplemental material.

3.4. Numerical Approximation of the Objective

We recover an approximation of p(u | ttt, T ) that is given
by

p̂(u | ttt, T ) = fu ?Nσ2(ttt)+γ2

(
T ◦ µd(ttt)

)
. (17)

The derivative of the above expression with respect to ttt
cannot be analytically computed. Hence, we replace equa-
tion (17) with

p̃(u | ttt, T ) = exp

(
−
∑D−1
d=0 Vu

(
T ◦ µd(ttt)

)
1 + σ2(ttt) + γ2

)
(18)

which we maximise instead of p̂(u | ttt, T ) directly. We pro-
vide an empirical justification for this approximation in the
supplemental material appendix A. In our experiments, we
minimise the negative log of equation (18) which is given
by

E0(ttt, T ) =

D−1∑
d=0

Vu(T ◦ µd(ttt)) + σ2(ttt) . (19)

4. Experiments
In this section, we investigate the effect of the latent

space dimension, the edge potential function, and the type
of mapping from the latent space to shape space. We de-
scribe how we use the GPLVM kernel to switch from a
linear and a non-linear mapping in section 4.2. We report
the deviation from the ground truth of the bone outline and
the joint space for each bone in the right index finger in
a 10-fold validation exercise. Figure 3 shows the bones
being segmented and the joints being measured. We per-
form further experiments in in the supplemental material
appendix B, where we also investigate the effect of the pos-
terior variance term in equation (19).

To obtain the Joint Space Width (JSW) from two neigh-
bouring curve outlines, we first find the distance of each
point in the bottom bone outline from the top bone outline
via the distance transform of the top curve. Then we com-
pute the average distance from the top bone outline of 10
successive coordinates in the bottom bone outline. That is,
we perform a convolution on the array containing the dis-
tance of each coordinate of the bottom curve from the top
curve with a kernel of size 10. We take the joint space to be
the minimum of these averages.

4.1. Dataset

For real world evaluation, we usedN = 101 radiographs
from an observational research cohort [1]. The radiographs
all had Sharp Van der Heijde and Ratingen scores of 0 along
the index finger [29, 31]. All patients fulfilled the CASPAR
criteria for PsA [24]. The principles of the Declaration of
Helsinki were followed and ethical approval was obtained
from the National Research Ethics Services (NRES) Com-
mittee South West Wales Panel D. All patients included in
this study gave full written informed consent for participa-
tion.

The outlines of the MP, the PP, the MP and the DP of the
right index finger was delineated by an expert Rheumatol-
ogist using an in-house annotation software. We treat these
points as coming from the discretisation or sampling of a
parametric curve r, and as such, they were upsampled to
the same discretisation D = 110 using a Fourier Curve rep-
resentation [15]:

r(s) =

(∑Nf−1
j=0 aj cos (2jπs) + bj sin (2jπs)∑Nf−1
j=0 cj cos (2jπs) + dj sin (2jπs)

)
. (20)



Alignment: They were then made invariant to similarity
transforms by warping them onto the level set of the dis-
tance transform of some template example. The sampled
points on these curves were then put in shape correspon-
dence. Given two curves r1, r2 : [0, 1] → R2, two sam-
pled points r(s1), r(s2) would be in shape correspondence
if they have the same geometry at s1 and s2 respectively.
Let S ∈ RN×D be the sampling point data matrix where
sn,d is the d-th sampling location of the n-th data point. We
want want the derivatives at coordinate d to be the same
across the curve dataset. Campbell et al. [2] relax this re-
quirement, and instead minimise the difference between the
curvature at a coordinate and the average curvature at that
coordinate regularised by an elastic and a monotonic con-
straint. We use the same energy minimisation approach
when imposing shape correspondence.

4.2. GPLVM Training

The type of mapping from the latent space to shape
space is determined by the type of kernel used. In particular
Lawrence [12] shows that with a linear kernel, the latent
space of a GPLVM is the result of a PCA decomposition
on the data. By ignoring the posterior variance in equation
(19), we are essentially training a shape model that is
similar to the one used by Cootes et al. [4].

Hence, to train a non-linear shape model, we use an Auto
Relevance Determination (ARD) kernel

κard(ttt, ttt′) = φ2 exp

(
−1

2

Q−1∑
q=0

αq(tq − t′q)2
)

(21)

in a Bayesian GPLVM, which, when trained with Q set to a
high value, allows us to choose the latent space dimension
of the GPLVM by looking at the decay of the length-scales
αq [26]. Figure 5 shows the latent space along with the
corresponding generated shape.

The kernel we use for the linear shape model is given by

κlin(ttt, ttt′) = φ2(ttt)tttt′. (22)

which we use to train a GPLVM. When using the linear ker-
nel, the training latent space parameters T are simply given
by the PCA decomposition of the data matrix as shown by
Lawrence [12].

4.3. Edge Discriminator

We train a convolution U-net [20] to act as a bone de-
tector; details of the architecture and training for the U-
net are provided in the supplemental material appendix C.
Due to the incomplete annotation performed, segmentation
masks could only be generated for the right index finger. To
address this issue, images were cropped and masked. We

Input Image

U-net

U-net Output Ground-truth

Edge-set Edge-set

Otsu-thresholded Hessian

U-net Potential Hessian Potential

Distance Transform

True Potential

Distance Transform

Figure 4. Creation of the three edge potential functions. In all
cases, a distance transform is performed on the edge set. The U-
net edge set is found by performing Otsu thresholding [14] on the
hessian of the U-net bone predictions. The true edge potential is
found by performing a distance transform on the true edge set.

modify the cross entropy loss so that only pixels around the
masked area of interest contributed to the total loss. To turn
the U-net output into an edge potential, we first use a Hes-
sian Based edge detector [14] on the U-net output to find the
edge set. We then find the distance transform of this edge
set.

We also use the same Hessian based edge detector on the
image directly to get an edge set which we distance trans-
form. To assess the performance of these two edge poten-
tial functions, we create the true edge potential function by
using the true outlines as the edge set in the distance trans-
form. We show this process in Figure 4.

4.4. Results and Discussion

Our results are shown in Figures 6 and 7 where we show
the error for each bone when using different edge potential
function and latent space dimensions. We show both the
overall average error across the whole bone (Figure 6) as
well as specifically the error in the estimation of the joint



Figure 5. The plots shows a GPLVM generating two different shapes from two latent point positions ttt. A latent space of dimension Q = 4
can be seen on the middle and right most plots on which the black cross shows the value ttt that generates a shape on the left-most plots.
The latent plots show the posterior variance σ2(ttt) of the GPLVM.

space width (Figure 7).

Latent Space Dimension: To understand the effect of the
latent space dimension Q, we consider the accuracy when
using the true bone outlines to build the edge potential func-
tion. We can see that the error decays as one increases the
latent space dimension. This is because the higher dimen-
sions are able to capture finer shape features; that is, higher
Fourier modes in the expansion (20). We do not observe this
when using the other discriminators as these fail to capture
these high frequency features in the pixel domain.

Potential Function: The U-net potential does worse than
the simple edge discriminator when detecting bones. How-
ever, it yields better results when measuring the joint width.
As observed in Figure 4, U-net yields an edge potential
function that is better at modelling the joint gap than the
simple hessian edge discriminator. This is because the con-
volution kernels of U-net are extracting finer scale features
that correspond to high dimensional derivative information.

The edge discriminators capture noise with short length
scales which distorts the true shape of the outline as shown
in Figure 4. The shape model overcomes this problem by

instead capturing longer scale correlations in the pixel space
through its prior.

Non-Linear Latent Space Mapping: The linear shape
model shows worst accuracy when used alongside the Hes-
sian and unet based potential functions. This difference is
more pronounced when using the Hessian based potential
function, which suggests that the non-linear kernel is more
robust to noise present in the potential function.

5. Conclusion
We propose to use an ALSSM to segment bones from

a hand in order to find the joint space. The model uses a
non-linear GPLVM representation for shapes which are rep-
resented as discretised curves bounding an area of interest.
We highlight the importance of the edge potential function
by showing that it is what guides the performance of the
model in a 10-fold validation result. Particular emphasis
was laid on the full Bayesian Marginalisation of our model.
The method we propose allows one to control the error ob-
tained from the approximation in section 3.3 and captures
the uncertainty in the predictions from the model which can
be used to support down-stream clinical decisions.



Figure 6. Results for the average L-2 error between the model generated bone outline and the true bone outline against the dimension Q
of the GPLVM latent space in a 10-fold validation. We compare the performance of three edge potential functions; one built by a U-net
discriminator (unet), one built using a hessian based edge finder (hessian) and finally by using the true bone outline to build the potential
(true). We also investigate the effect of using a non linear kernel (ARD) and a linear kernel. The vertical lines represent error bars (standard
deviation) of each mean.

Figure 7. Results for the average error between the model generated joint space width and the true joint space width against the dimension
Q of the GPLVM latent space in a 10-fold validation. We compare the performance of three edge potential functions; one built by a U-net
discriminator (unet), one built using a hessian based edge finder (hessian) and finally by using the true bone outline to build the potential
(true). We also investigate the effect of using a non linear kernel (ARD) and a linear kernel. The vertical lines represent error bars (standard
deviation) of each mean.

Importantly, using the automatic alignment approach, we
are able to make accurate estimates of the JSW without re-
quiring detailed annotation from clinicians who would need
to put all landmarks in correspondence manually, which
would result in a large increase in the time and expense
taken to label an x-ray.
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