
Supplemental: Bayesian MRI reconstruction with
structured uncertainty distributions

A Implementation details

Here we outline some implementation details for our method. Full details can be
found in the code https://github.com/teojd/supn_variational_mri.

For the SUPN prior distribution we define encoder p(z|x) = N (µϕ(x), σ
2
ϕ(x)I)

and decoder p(x|z) = N (µθ(z), Σθ(z)). Our parameterisation of Σθ is defined
by a sparse representation of the Cholesky of the precision matrix as described
in the original structured uncertainty prediction networks (SUPN) paper [4].
Here the original formulation has also been expanded to account for the multi
channel requirement of complex MRI by adding an additional variable per pixel
that captures cross-channel off-diagonal precision elements. Our architectures
are composed of 5 encoding/decoding blocks, consisting of 3 residual layers sim-
ilar to the original work. We also use group normalisation and SiLU activation
functions. We initialise the predicted covariance to be equivalent to a scaled di-
agonal, Σθ = 1

10I and then we train the prior in two stages: In stage one we fix
Σθ and train the encoder and mean decoder for 200 epochs with a learning rate
of 10−3 to maximise the standard VAE evidence lower bound

LV AE(θ, ϕ) := Eqϕ(z|x)[p(x|z)]−DKL(q(·|x)||p(·|x)). (1)

In stage two we reduce the learning rate to 10−4, unfreeze the covariance Σθ

and optimise the same loss, eq. (1) over all encoder and decoder parameters for
a further 400 epochs.

Given this prior, posterior reconstruction is performed by maximising the
evidence lower bound as described in the main paper.

B Further visualisations: True vs modelled residuals

We validate the spatial structure captured by our posterior visually by comparing
samples of our posterior residual to the true residual attained by subtracting the
ground truth from the posterior estimate in Fig. 1. We see for these examples
that the true and posterior patterns share similar characteristics at all mask
sizes. We wouldn’t expect the model residual to perfectly reproduce fine detail
in cases where insufficient data is provided, however we do expect the fine details
of the true residuals to generally appear plausible under the posterior, which is
indeed the case. Moreover, as data increases, the breakdown of the true residual
structure is matched by our posterior model, demonstrating that these residuals
provide visual indications of the localised spatial accuracy of a reconstruction
that can not be reproduced by pixelwise or sample based uncertainty approaches.
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Fig. 1. Visualisation of the true and modelled residuals for two test examples at various
data quantities. Our method captures the qualitative spatial features of the true resid-
ual in all cases, giving insight into the space of possible reconstruction errors without
requiring ground truth.

C Variational approximation structure

We chose a separable variational approximation qλ(x, z) = qλx
(x)qλz

(z), which
may appear restrictive at first since this approximate posterior does not explic-
itly model the correlation between x and z. This is a nuanced point since the
true posterior p(x, z|y) does contain correlations between x and z. However, the
role of z within the framework is solely to enable flexible prior modelling, and
it will ultimately be marginalised from the posterior, as we seek to estimate
p(x|y) =

∫
p(x, z|y)dz. The specific values that z takes, and their correlations to

x, don’t provide any additional insight over the reconstruction. So our approx-
imate posterior not explicitly modelling the correlation in the joint posterior
distribution is not practically restrictive, as it still benefits from the expressive
prior model over x that the introduction of z enables. The result is the best
structured posterior approximation to the true posterior under this expressive
prior. This choice also trivialises the marginalisation of z, and the sparse Gaus-
sian construction ensures that we can easily evaluate posterior statistics and
produce interpretable uncertainty visualisations as shown in the main paper.

Of course, constructions that do consider the conditional structure could be
applied, for example by allowing our variational distribution to model images
conditional on the latent by taking qλ(x, z) = qλx

(x|z) qλz
(z), with qλx

(x|z)
modelled by some decoding distribution. This approach could lead to a more
flexible class of posterior, but would bring back the need for sample-based infer-
ence and ultimately harm the interpretability provided by our method.


