Roto++: Accelerating Professional Rotoscoping using Shape Manifolds
(Supplemental Material)

A Notation for the Technical Approach

Table A-1 contains a summary of the notation used in Section 4
with Figure A-1 illustrating the layout of the control points for an
input keyframe.

N Number of frames in the shot

n€l.N Index of a frame

K Number of available keyframes

kel.K Index of a keyframe

M Number of control points in the closed spline
m € 1..M Index of a control point

L Number of trackers

lel.L Index of a tracker

{Ux} Set of input keyframe splines

{Yn} Set of output splines

0,t,s The rotation, translation and scale of a spline
Q A rotation matrix

R A mean reference spline for alignment

X A location on the manifold

V =F(x) A new spline generated from the manifold
ps,lz),n I*™ Tracker output point for the m™ control

point in the nt" frame

Table A-1: Summary of notation used in Section 4.
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Figure A-1: Notation for the control points of the k'™ input
keyframe.

B The GP-LVM

We begin by introducing Gaussian Processes (GPs) and the GP La-
tent Variable Model (GP-LVM) which may be used to perform un-
supervised manifold learning. We will then provide details of how
we use this to generate our shape model.

Gaussian Proc Gaussian Processes [Rasmussen and
Williams 2006] represent distributions over functions and may be
used as a powerful tool to learn a smooth, non-linear mapping from

one space x € R? to another y € R”. They are particularly ef-
fective when mapping between spaces with different dimensions,
in our case we have ( < D, when the vectors of interest in the
higher dimensional space actually lie on a manifold of far lower di-
mension. We instinctively believe this to be the case for roto-curves
since the there are a very large number of possible splines that can
be drawn with M control points but only very few of them will map
to the shape of the object we are segmenting.

The GP achieves this mapping by modelling the covariance of the
higher dimensional vectors as a kernel function in the lower dimen-
sional space. If we assume that all our vectors are normalized to
have zero mean then the GP models the probability of a high di-
mensional vector y as the multivariate Gaussian

P(ylx) = N (10, 5(x,%)) . (B-1)

Here, x(x, x) is a kernel function that encodes how distances in the
low dimensional correlate to similar high dimensional vectors.

GP-LVM The GP-Latent Variable Model, [Lawrence 2005], takes
an unsupervised approach to learn a generative model. Unlike,
the standard GP, we only provide a set of high dimensional vec-
tors {yx} (the training data) and a desired kernel mapping function
k(+,-). The GP-LVM then estimates the best corresponding set of
low dimensional vectors {x} that generate the high dimensional
vectors when passed through the GP. Whilst the full derivation is
quite involved, the effect is that we end up with a set of low dimen-
sional vectors and a mapping function to generate high dimensional
vectors that are representative of the training data. For our purposes
we set the high dimensional vectors to be the spline keyframes (in
dimension D = 2M) and we learn a set of points {x} in R?
(we use Q = 2) and a mapping such that for every point in the 2D
space, we generate a different roto spline.

The nature of the mapping between the spaces is determined by the
kernel function. We use the Radial Basis Function (RBF) kernel

1
i 0 8) = aep (<30l <) B2)

where « and [ are the variance and length-scale hyper parameters.
The RBF kernel is inherently smooth, therefore, as we move around
in the low dimensional manifold space the high dimensional space
will also vary smoothly. This provides the desirable property for us-
ing the manifold for rotoscoping: neighboring frames should have
smoothly varying shape and therefore should have nearby embed-
ded spaces. This is demonstrated by Figure 3 where we embed 19
consecutive roto-curves in a 2D manifold.

Learning the Manifold We learn the manifold model by opti-
mising the hyper parameters (o, ) a noise parameter (o) and the
embedded locations (X = {xj}) of the corresponding training
keyframe splines ({y«}). We maximise the likelihood of the train-
ing examples factored across each of the dimensions as

K
P(Y|X,Q) = [[V (V()|0,k(X, X |, B) + 0°T) , (B-3)
k
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Figure C-2: Quantitative measure of error against time for shot
Arm. We quantitatively compare our method to the commercial
Mocha workflow and RotoBrush on our Arm shot (Containing 30
frames, the same shot used in Figure C-3). The shaded regions
around each curve represents one standard deviation.

where €2 denotes the hyper and noise parameters and Y and X are
stacked collections of training row vectors such that

y=1| (B-4)
Yk (2)
and similarly for X. Here we used the notation

V() = [V vy R yHvE ] erM (B-5)
to unwrap Y (a 2 x M matrix of spline keypoints) as 1 x 2M
row vector. Also, we use the notation x(X, X | «, 8) to denote the
covariance matrix

[£(X, X [0, B)], ; = K(xi,x; | @, B) . (B-6)

Since the kernel matrix is a non-linear function we use a gradient
based non-linear optimiser to maximise Equation B-3 and initialize
the low dimensional vectors using linear PCA to reduce the high
dimensional vectors to the appropriate number of dimensions (Q)).
We also place a unit Gaussian prior on the manifold locations to
maintain a natural scale.

Generating New Splines Once we have trained the GP-LVM,
we can generate new splines from a low dimensional location x’ by
conditioning the distribution of Equation B-3 on the training data.
In practical terms, this produces a simple matrix multiplication

1

Y =F(x) =r(x, X|o, f)[5(X, X[, )] Y (B

to generate the new normalized spline y’.

C Additional Results

Figure C-3 shows our additional visual comparison to the JumpCut,
RotoBrush and Mocha Tracker. The selected clip contains eight ad-
jacent frames (1080p), and represents the difficulties of non-rigid
deformation and illumination changes. Within this comparison, we

keyframe the first and the last frames across all the trials. For the
tests of JumpCut and RotoBrush, we show the curve propagation
results in forward and backward separately because the related soft-
ware does not support the propagation using two keyframes. Our
method outperforms the JumpCut and RotoBrush, and yields com-
petitive accuracy when compared to the proprietary Mocha Tracker
(4.36 v.s. 6.42 average pixel RMS).

Figure C-2 shows our additional quantitative comparison to the
Mocha Tracker and RotoBrush. An experienced artist performs
the rotoscoping on a difficult shot (the Arm, 30 frames) by using
Mocha Pro 4.1.0 and AfterEffect CC’15 (RotoBrush) respectively.
We shows the points error against the time elapsed. The the com-
mercial packages, the artist is required to output the alpha masks at
5 minute intervals after the first two keyframes. Note that this com-
parison does not include JumpCut because the GUI is not publicly
available.
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Figure C-3: Qualitative comparisons of different rotoscoping methods. We propagate a curve from a reference frame to the other frames
of the arm shot. From Top to Bottom, The First group shows the JumpCut results by propagating the reference curve in forward (first row)
and backward (second row) directions respectively. The Second group illustrates the results of RotoBrush (Adobe AfterEffect CC 2015). The
Third group shows the results by using the Mocha Tracker (ver. 4.1.0) which takes into account two reference frames. The Fourth group
gives the results of our method which uses the manifold (trained by two reference keyframes) and the blender planar tracker. The Bottom row
shows the ground truth for each frame. Note that the cyan circles highlight details for the results.



