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Abstract.

Deep neural network approaches to inverse imaging problems have produced

impressive results in the last few years. In this paper, we consider the use of

generative models in a variational regularisation approach to inverse problems. The

considered regularisers penalise images that are far from the range of a generative

model that has learned to produce images similar to a training dataset. We name

this family generative regularisers. The success of generative regularisers depends on

the quality of the generative model and so we propose a set of desired criteria to

assess generative models and guide future research. In our numerical experiments,

we evaluate three common generative models, autoencoders, variational autoencoders

and generative adversarial networks, against our desired criteria. We also test three

different generative regularisers on the inverse problems of deblurring, deconvolution,

and tomography. We show that restricting solutions of the inverse problem to lie

exactly in the range of a generative model can give good results but that allowing

small deviations from the range of the generator produces more consistent results.
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1. Introduction

Solving an inverse problem is the process of calculating an unknown quantity, x ∈ X ,

from observed, potentially noisy, measurements, y ∈ Y . In this work X and Y are

assumed to be real finite-dimensional vector spaces. The two are related by a forward

model, A : X → Y , that, for simplicity, is assumed to be linear, giving the equation

y = Ax. (1)

Inverse problems are nearly always ill-posed: there does not exist a unique solution or

small deviations in the data lead to large deviations in the solution. Addressing this is

critical for applications where the solution is used to make decisions. Throughout this

paper, we focus on image reconstruction problems, where x ∈ X is an image, but there

are many other applications.

Generally, ill-posed problems are solved by incorporating some prior information;

this is often given in the form of a regulariser in a variational regularisation

framework [74, 42, 10]. Consider the optimisation problem

x∗ ∈ arg min
x
Ly(Ax) + λR(x), (2)

where Ly : Y → [0,∞] is a similarity measure; the constant λ is a regularisation

parameter and R : X → [0,∞] is a regulariser that is small when some desired

property of the image is fulfilled. For example, Tikhonov regularisation encourages the

reconstruction to be small in the 2-norm, while Total Variation (TV) regularisation [72]

allows large gradients (e.g . edges) to occur only sparsely in the reconstruction. These

hand-built regularisers are better suited to some types of images over others, e.g . TV is

tailored to piece-wise smooth images. A natural question to ask is: given a set of images,

which regulariser would work well? Alternatively, how can we produce regularisers that

are tailored to specific data or tasks?

There is a wide body of research into learning regularisers. Approaches include

using a regulariser to force reconstructions to be sparse in some learned basis for feasible

images [3]. Others have included a network trained for denoising [83, 58, 70] or removing

artefacts [54, 64, 28] in the regulariser term, favouring images that are unchanged by the

network. More recently, ‘adversarial regularisation’ [56] uses a neural network trained

to discriminate between desired images and undesired images that contain artefacts.

For a recent overview on approaches to using deep learning to solve inverse problems,

see for example [7].

In this paper, we consider the case where the regulariser depends on a learned

generative model. The assumption is that the plausible reconstructions exhibit local

regularities, global symmetries or repeating patterns and so naturally lie on some lower

dimensional manifold, a subset of X . A generator G : Z → X takes points from a latent

space, Z, where dim(Z)� dim(X ), parameterising this lower dimensional manifold. In

practice, the generator is taken to be a parameterised function, Gθ, with parameters θ,

for example a neural network, trained such that the generated points Gθ(z) ∈ X are

similar to some pre-defined training set. In this work, we investigate regularisers [13,
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25, 36, 80] that penalise values of x ∈ X that are far from the range of the generator,

G, and call these generative regularisers. A popular example [13], revisited in Section

3.1.1, limits solutions to those that are exactly in the range of the generator,

x∗ = G(z∗), z∗ ∈ arg min
z
‖AG(z)− y‖22 + λ‖z‖22. (3)

Generative regularisers combine the benefits of both a variational regularisation and

data-driven approach. The variational approach builds on the advancements in model-

based inverse problems over the last century, while the data-driven approach will provide

more specific information than a hand crafted regulariser. The method remains flexible

as the machine learning element is unsupervised and therefore independent of the

forward model and the noise type. In this work, we test different generative regularisers,

inspired by the literature, on deconvolution, compressed sensing and tomography inverse

problems. The success of generative regularisers will depend on the quality of the

generator. We propose a set of criteria that would be beneficial for a generative model

destined for use in a inverse problems, and demonstrate possible methods of testing

generative models against this criteria.

2. Generative Models

This section provides background on generators and generative models, focusing

in particular on three approaches: Autoencoders, Variational Autoencoders and

Generative Adversarial Networks.

2.1. Autoencoder (AE)

An AE has two parts, an encoder and a decoder. The encoder encodes an image in some

latent space and the decoder takes a point in this latent space and decodes it, outputting

an image. The lower dimensional latent space forces the network to learn representations

of the input with a reduced dimensionality. Denote the encoder Eψ : X → Z and the

decoder Gθ : Z → X , neural networks with parameters ψ and θ. The networks are

trained by minimising a reconstruction loss

Ex ‖x−Gθ(ψ(x))‖22 . (4)

The expectation is taken empirically over the training dataset. Post training, the

decoder can be used as a generator. With no structure imposed on the latent space,

generating from random points in the latent space may not lead to outputs similar to

the training set. Furthermore, points close in the latent space may not lead to similar

generated images. Nevertheless, this method of training is simple and has recently

been used in learned singular valued decomposition and for applications in sparse view

CT [11, 63].
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2.2. Probabilistic Models

In order to add greater structure and meaning to the latent space and to discourage

unrealistic outputs from the generator we consider a probabilistic approach. Let P ∗ be

the probability distribution of desired solutions to the inverse problem. We consider

a prior distribution, PZ , and push it through the generator, G, to give a generated

distribution PG on X . Sampling from the prior and then applying the generator allows

samples to be taken from PG. The generator, G, is chosen to minimise a distance

between PG and P ∗.

2.3. Generative Adversarial Network (GAN)

The choice of Wasserstein distance between PG and P ∗ and an application of the

Kantorovich-Rubinstein duality leads to the Wasserstein GAN [5], a popular generative

model. Following the derivation given in [5, 33], the task of minimising the Wasserstein

distance becomes

min
θ

max
ψ

Ex∼P ∗Dψ(x)− Ez∼PZDψ(Gθ(z)). (5)

The generator Gθ : Z → X is as before, and we have introduced a discriminator

Dψ : X → R which must be 1-Lipschitz, enforced by an additional term added to

(5)[33].

In the game theoretic interpretation of the GAN [29] a generative model competes

with a discriminative model. The discriminator aims to accurately identify real images,

maximising Ex∼P ∗Dψ(x), from generated images, minimising Ez∼PZDψ(Gθ(z)). The

generator tries to force the discriminator to label generated images as real, maximising

Ez∼PZDψ(Gθ(z)).

For the numerical results in this paper we choose to use a Wasserstein GAN (5) as

it is often more robust to a range of network designs and there is less evidence of mode

collapse, when the generator learns just part of the target distribution, compared to the

‘vanilla’ GAN [5].

2.4. Variational Autoencoder (VAE)

For another choice of distance between PG and P ∗, take the Kullback–Leibler (KL)

divergence (dKL(P ∗‖PG) =
∫
X log dP ∗

dPG
dP ∗) which leads to the VAE [49]. Following the

derivation in [49, 48], the VAE loss function can be written as

Ex∼P ∗
(
Ez∼Nx,ψ

[
‖x−Gθ(z)‖22

2ρ2

]
+ dKL (Nx,ψ‖PZ)

)
(6)

where Nx,ψ := N (µψ(x), diag(σ2
ψ(x))) and µψ, σ

2
ψ : X → Z are the encoder mean

and encoder variance, neural networks with parameters ψ. The constant ρ is a

hyperparameter chosen to reflect the ‘noise level’ in the training dataset.

We can interpret the two terms in (6) as a data fit and a regulariser term,

respectively. In the first term, the reconstruction and the original image is compared.
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Encoding to a distribution, Nx,ψ, enforces that points close to each other in the latent

space should produce similar images. In the second term, the KL divergence encourages

the encoded distributions to be close to the prior, PZ . The prior is usually taken to be

the standard normal distribution. The balance between the two terms is determined by

the noise level ρ.

2.5. Other Generative Models

Generative modelling is a fast growing field and there are other examples of generative

models. Autoregressive models [23] generate individual pixels based on a probability

distribution conditioned on previously generated pixels. Normalising flows and, more

generally, invertible neural networks [43], map between a latent space and an image

space of the same dimension and are designed to be bijective, with a tractable Jacobian.

They can provide a generated distribution with tractable density. A recent invertible

neural network example is a GLOW network [47] which has been used in regularisation of

the form RG(x) = ‖G−1(x)‖22 [62]. Score based generative models, learn to approximate

∇p∗, where p∗ is a probability density over the desired image distribution, P ∗, and can

then be used to sample from P ∗ using Langevin dynamics [77]. They have also been

used recently as priors for inverse problems, allowing the approximate posterior to be

sampled using Monte Carlo methods [69, 45].

We will consider desired properties of generative models in more detail in Section 4.

3. Generative Regularisers for Inverse Problems

In this section, we bring together current approaches in the literature that penalise

solutions of an inverse problem that are far from the range of the generator G. We

consider variational regularisation (2) and regularisers of the form

RG(x) = min
z∈Z

F (G(z)− x) +RZ(z) (7)

where F : X → [0,∞] and RZ : Z → [0,∞]. We consider choices for F .

3.1. Choices of F in (7)

3.1.1. Restricting solutions to the range of the generator The characteristic function

of an arbitrary set C is defined as

ιC(t) =

{
0 for t ∈ C
∞ for t /∈ C

.

Taking F (x) = ι{0}(x) and RZ(z) = ‖z‖22 in (7) gives (3) and describes searching over

the latent space for the encoding that best fits the data. Their choice RZ(z) reflects

the Gaussian prior placed on the latent space. Bora et al . [13] first proposed this

strategy, applying it to compressed sensing problems. There are a number of interesting
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applications using this method, such as denoising [80], semantic manipulation [32],

seismic waveform inversion [60], light field reconstruction [19], blind deconvolution [8]

and phase retrieval [38]. Bora et al . [13] assume the existence of an optimisation

scheme that can minimise (3) with small error and from this probabilistically bound the

reconstruction error. However, the non-convexity introduced by the generator makes any

theoretical guarantees on the optimisation extremely difficult. Assuming the forward

operator is a Gaussian matrix (the generator weights have independent and identically

distributed Gaussian entries) and the layers of the generator are sufficiently expansive

in size, there exists theoretical results on the success of gradient descent for optimising

(3) [37, 53, 22].

This formulation can also be optimised by projected gradient descent [75, 44]:

wt+1 = xt − ηAT (Axt − y)

zt+1 = arg min
z
‖wt+1 −G(z)‖2 (8)

xt+1 = G(zt+1).

With analogies to the restricted isometry property in compressed sensing [16], Shah

and Hegde [75] introduce the Set Restricted Eigenvalue Condition (S-REC). If the S-

REC holds, then the operator A preserves the uniqueness of signals in the range of G.

Theoretical work considers the case where A is a random Gaussian matrix, and shows,

under some assumptions, it satisfies the S-REC with high probability. In addition, if

the generator is an untrained network, then the projected gradient descent approach

with sufficiently small step size converges to x∗, where Ax∗ = y [75, 44, 68].

3.1.2. Relaxing the Constraints Returning to Bora et al . [13], the authors note that

as they increase the number of compressed sensing measurements, the quality of the

reconstruction levels off rather than continuing to improve. They hypothesise that this

occurs when the ground truth is not in the range of the generator. One could consider

relaxing the constraint that the solution is in the range of the generator, for example

setting F (x) = ||x||22 allows for small deviations from the range of the generator. One

could also encourage the deviations to be sparse, for example by taking F (x) = ||x||1 [25,

39]. Some theoretical considerations for this softly constrained approach is given in [28].

This approach is similar to the approaches of [54, 64] where they take G ◦ E : X → X
an encoder–decoder network and define RG(x) = ‖x−G(E(x))‖22. The idea is that this

regulariser approximates the distance between x and the ideal data manifold. Less

explicitly, there are a number of approaches that extend the range of the original

generator, through optimisation of intermediate layers of the network [59, 21, 34] or

tweaking the generative model training in response to observed data [61, 41].

3.2. Additional regularisation

Additional regularisation on Z is given by RZ in (7). The most common choice is

RZ(z) = ‖z‖22 [13, 8] but there are other possibilities, for exampleRZ(z) = ι[−1,1]d(z) [80],
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where d = dimZ. Often, the regularisation matches the prior on the latent space used

in generator training. Menon et al . [59] discuss that RZ(z) = ‖z‖22 forces latent vectors

towards the origin. However, most of the mass of the d-dimensional standard normal

prior on their latent space is located near the surface of a sphere of radius d. Instead,

they use a uniform prior on dSd−1. This idea has also been explored for interpolations

in the latent space [84]. In addition, the prior on the latent space may not be a good

model for the post-training subset of z that maps to feasible images. For a VAE there

may be areas of the latent space that the generator has not seen in training and for a

GAN, there could be mode collapse. A few recent papers consider how to find the post

training latent space distribution [20, 9].

Other regularisation choices could be based on features of the image, x = G(z).

For example VanVeen et al . [82] use RZ(z) = TV(G(z)). For a GAN generator,

it is possible to take the regularisation term to be the same as the generator loss

RZ(z) = log(1 − D(G(z))). This regulariser utilises the discriminator, D, which has

been trained to differentiate generated from real data. Examples include inpainting [86,

51] and reconstruction from an unknown forward model [4].

3.3. Other Approaches

There are a number of ideas that are linked to earlier discussions in this Section but we

will not cover in detail. A major benefit of (2) is the flexibility to changes in the forward

model. We have threfore ignored conditional generative models [1, 66, 85, 57, 88, 65,

76] and those that train with a specific forward model in mind [54, 46, 35]. We also

exclude work that uses an untrained neural network, for example Deep Image Priors

[82, 81, 26] or [36].

4. Generative Model Evaluation

Typically the aim of a generator has been to produce high fidelity images. However,

the success of (7) relies not just on the ability of the generator to produce a few good

images but to be able to produce every possible feasible image. In this section, we discuss

desired properties for a generator trained for use in inverse problems and numerically

explore methods to test these properties.

4.1. Desired Properties

To evaluate a generative model, in the context of inverse problems, we consider two

overall aims which we will go on to further decompose:

A Samples from the generator are similar to those from the target distribution.

B Given a forward model and an observation, the image in the range of the generator

that best fits the observation can be recovered using descent methods.

We split aim A into a set of properties:
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A1 The generator should be able to produce every possible image in the target

distribution. That is, for all x ∈ X such that x is similar to images in the training

dataset, there exists z ∈ Z such that G(z) = x.

A2 The generator should not be able to produce images far from the target distribution.

That is, for all x ∈ X such that x is not similar to images in the training dataset,

then there does not exist z ∈ Z such that G(z) = x.

A1 includes that the generator should be robust to mode collapse and that the

model should not trivially over-fit to the training data.

In the probabilistic case, with a prior over the latent space, Property A becomes:

A That samples from the latent space, when mapped through the generator, will

produce samples that approximate a target distribution. We should have that

d(P ∗, PG) is small for some distance measure d.

We also note that in the probabilistic case, A1 and A2 are not independent. By assigning

probability mass to parts of the image space close to the target distribution, it is less

likely that images far from the target distribution can be generated. In the probabilistic

case, a third Property is added:

A3 The generator should map high probability vectors in the latent space distribution

to high probability images in the target distribution.

It is possible that A1 and A2 are satisfied but not A3. Note that these properties may

not be possible to achieve for a given dataset.

We define two properties for Property B, these are

B1 The generator should be smooth with respect to the latent space, Z.

B2 The area of the latent space, Z, that corresponds to images similar to those in the

training set should be known.

B1 ensures that gradient–based optimisation methods can be used. Continuity is

also desirable: we wish that, in some way, points close in the latent space should produce

similar images. B2 considers that we need to have a distribution on or subset of Z to

sample from in order to use the generator to sample images. This distribution may not

necessarily be equal to any priors on the latent space used during training. We recognise

that B1 and B2 are perhaps vague, and are potentially not sufficient for Property B. It is

an area for future work to consider making these statements precise enough to support

theoretical work.

4.2. Generative Model Evaluation Methods

There are a wide range of existing generative model evaluation methods [14], focused

mostly on Property A. We assume the availability of some test data drawn from the

same distribution as the training data and unseen by the generative model. The average

log likelihood [29] of test data under the generated distribution is a natural objective to
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maximise. There is evidence, however, that the likelihood is generally unrelated to image

quality and is difficult to approximate in higher dimensions [78]. To calculate a distance

between generated and desired distributions, one possibility is the earth movers distance

(EMD) [71], a discretised version of the Wasserstein distance. One could also encode

the generated and unseen data in a lower dimensional space before taking distance

calculations, for example by taking the outputs of one layer of any neural network

trained for classification [40, 31]. A model that overfits to the training data would

perform perfectly in these distance measures. Also, the low dimensional representation

used for the evaluation is likely to have the same inherent problems and drawbacks as

the embedding learnt by the generative model. Similarly, a number of tests train an

additional, separate, neural network discriminator to distinguish between test data and

generated data [5, 55]. Failure to classify the two is a success of the generative model.

For testing a GAN, the new discriminator is unlikely to be able to pick up failures that

the original discriminator, used in training, missed. Finally, Arora et al . [6] estimate

the size of the support of the generated distribution. A low support size would suggest

mode collapse. Their technique depends on manually finding duplicate generated images

which can be time consuming and require expert knowledge.

Property B is less explored in the literature. One approach is to directly attempt

to reconstruct test data by finding a latent space vector that when pushed through the

generator, matches the data. With these found latent vectors, analysing their locations

could check Property B2. To test the smoothness of the generator with respect to the

latent space, Property B1, many previous papers, including the original GAN and VAE

papers [29, 49], interpolate through the latent space, checking for smooth transitions in

the generated images.

4.3. Numerical Experiments

In this Section, we evaluate AE, VAE and GAN models against the desired properties

given in Section 4.1. We consider experiments on two datasets. Firstly, a custom

made Shapes dataset with 60,000 training and 10,000 test 56 × 56 grey-scale images.

Each image consists of a black background with a grey circle and rectangle of constant

colour. The radius of the circle; height and width of the rectangle; and locations of

the two shapes, are sampled uniformly with ranges chosen such that the shapes do not

overlap. This dataset is similar to the one used in [66]. Secondly, the MNIST dataset [52]

consists of 28× 28 grey-scale images of handwritten digits with a training set of 60,000

samples, and a test set of 10,000 samples. For examples of both datasets, see the ground

truth images in Figure 2.

Architecture details are given in the appendix. We chose to use the same

generator network for all three models, for comparison. Architecture choices were

guided by [49, 33, 73]. All models have gone through a similar amount of optimisation

of hyperparameters, including: the noise level ρ in the VAE decoder (6); the

latent dimension; number of layers; choice of convolution kernel size; drop out
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probability; leaky ReLU coefficient and learning rate. In order to select hyperparameters

we manually inspected generated images. Models were built and trained using

Tensorflow [30] in Python and made use of the Balena High Performance Computing

Service at the University of Bath. The models were trained using a single Dell

PowerEdge C8220X node, with two Intel E5-2650 v2 CPU, 64 GB DDR3-1866 MHz

Memory and an Nvidia K20X GPU, 6 GB memory. The MNIST and Shapes VAE models

taking approximately 25 and 45 minutes to train, respectively.

4.3.1. Reconstructing a Test Dataset Property A1 asks that the generator is able to

produce every image in the target distribution. Gradient descent with backtracking line

search (Algorithm 1, in the appendix) is used to approximate

z∗(x) ∈ arg min
z
‖G(z)− x‖22, (9)

for each x ∈ Xtest, an unseen test dataset. For the AE and VAE, the algorithm is

initialised at the (mean) encoding of the test image, Eψ(x) and µψ(x), respectively. For

the GAN, we take 4 different initialisations, drawn from a standard normal distribution,

and take the best result. We find empirically, especially for the GAN, that different

initialisations lead to different solutions.

Figure 1 shows ‖G(z∗(x)) − x‖2/‖x‖2, the normalised root mean squared error

(NRMSE) for reconstructions on Shapes and MNIST for the three different generator

models. We see that, for both datasets, the AE and VAE have almost identical

reconstruction results and the GAN results are comparatively worse. For the Shapes

dataset the difference in results between the three generative models is less stark. In

addition, NRMSE values are given for three different latent dimensions to show that

the results are not sensitive to small changes in latent dimension. Latent dimensions

of 8 and 10 for MNIST and Shapes, respectively, are used in the rest of this paper.

Figure 2 also shows reconstruction examples providing context to the results in Figure 1.

Numerical values on the image use the Peak-Signal-to-Noise-Ratio (PSNR, see definition

3.5 in [15]). The non-circular objects in the GAN results for Shapes could be a failure

of the discriminator to detect circles.

4.3.2. Distance Between PG and P ∗ To investigate Property A3, the EMD [71] is

calculated between empirical observations of the generated and the data distributions

PG and P ∗. For the sets of test and generated images, Xtest = {x1, . . . , xN} and

{G(z1), . . . , G(zN) : zi ∼ N (0, I)}, the EMD between their empirical distributions is

defined as

min
f

{
N∑

i,j=1

fi,j‖xi −G(zj)‖22 : 0 ≤ fi,j ≤ 1,
N∑
i=1

fi,j = 1,
N∑
j=1

fi,j = 1

}
. (10)

The EMD is calculated using the Python Optimal Transport Library [27] with N =

10, 000, the full test set. The results are given in Figure 3. In both the MNIST and

Shapes examples, the VAE has a lower EMD across the latent dimensions. The AE is
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Figure 1: NRMSE between values of G (arg minz ‖G(z)− x‖2) and x and plotted as a

histogram for all x ∈ Xtest. The horizontal lines show the median and range and the

shaded area a histogram. Note the brown colour is the result of the overlapping orange

(VAE) and blue (AE).
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(a) AE – MNIST
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(c) GAN – MNIST
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(e) VAE – Shapes
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Figure 2: Example reconstructions for the MNIST and Shapes dataset with eight ten-

dimensional generative models respectively. In each sub-figure, the top row shows the

ground truth, second row the reconstruction and third row the difference between the

two.
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Figure 3: EMD between the test dataset and samples from a trained generator.

(a) MNIST (b) Shapes

Figure 4: Comparisons of the latent space encodings of a test dataset with a standard

normal distribution by projecting the vectors into 2 dimensions. Encodings of the test

dataset are in orange and the standard normal vectors in blue.

added to this plot for comparison purposes but, as there is no prior on the latent space,

zi ∼ N (0, I) may not be a suitable choice to sample from.

4.3.3. Visualisations of the Latent Space Property B2 requires that the area of the

latent space that maps to feasible images is known. There is no prior on the latent

space enforced for AEs and a N (0, I) prior is imposed for VAEs and GANs. In Figure 4,

gradient descent with backtracking (Algorithm 1 in the appendix) is used to approximate

(9), finding a latent vector z∗(x) for each x ∈ Xtest. For comparison, the values z∗(x) for

the test set and 10,000 vectors drawn from a standard normal distribution are randomly

projected into 2 dimensions. The encodings in the latent space match the prior N (0, I)

for VAEs and GANs. For AEs, there are examples in lower latent dimensions, where

the area covered by the encodings does not match a standard normal distribution.

4.3.4. Generating Far from the Latent Distribution A known latent space gives known

areas to sample from to produce new images. Figure 5 shows image examples generated

far from a standard normal distribution. The images are not recognisable as similar to

the training datasets. This emphasises the importance of Property B2, that the area of
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Figure 5: Images generated far from the high-probability region of the prior distribution.

the latent space that corresponds to images similar to those in the training set should

be known.

4.3.5. Interpolations in the Latent Space We consider interpolating between points

in the latent space, testing property B1. We hope to see smooth transitions between

interpolated images, and that generated images are similar to those seen in training. We

take three images from the test data, x1, x2 and x3, find z1, z2 and z3, their encodings in

the latent space, using (9) and then plot interpolations G(z1 +α1(z2− z1) +α2(z3− z1))
for α1, α2 ∈ [0, 1]. Figure 6 shows one example for each model and dataset for

α1, α2 = {0, 0.25, 0.5, 0.75, 1}. In the AE and VAE, you see transitions that are smooth

but blurry. The GAN images appear sharper but some outputs are not similar to training

data examples, for example, in Figure 6(f) there are a set of images that contain no

rectangle. These images could be evidence of a discriminator failure: the discriminator

has not yet learnt that these images are not similar to the training set.

4.3.6. Discussion As expected, none of the three generator models, AE, VAE and

GAN, fulfil Property A and B fully. For A, the GAN does poorly in the reconstruction

results of Figures 1 and 2. The lack of encoder makes this more challenging. There is

evidence of mode collapse, where parts of the training data are not well reconstructed

and discriminator failure, where the images produced are not realistic, see Figures 2

and 6. The VAE does consistently better, demonstrated by the lower EMD between

generated and test data in Figure 3. The lack of prior on the AE, and thus a known area

of the latent space to sample from, is a problem. Figure 5 demonstrates that sampling

from the wrong area of the latent space gives poor results.

Pulling apart the cause of a failure to recover an image is difficult. It could be that

the image is not in the range of the generator, a failure of Property A, or that the image is

in the range of the generator but the image cannot be recovered using descent methods,

a failure of Property B. For property B1, the mathematical properties of continuity or

differentiability of a network, depend on the architecture. The interpolations in Figure

6 show some evidence of large jumps between images in the GAN cases, but in general
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Figure 6: Interpolation ability of an AE, VAE and GAN. The highlighted top left,

bottom left and top right latent space values were chosen close to the test dataset and

the other images are computed via linear combinations in the latent space.

the interpolations are reasonable. For both the GAN and the VAE, in Figure 4, the

encodings of the test images in the latent space seem to match the prior, Property B2.

5. Numerical Results for Inverse Problems

In this section, we apply AE, VAE and GAN models, evaluated in the previous

Section, on three inverse problems. Firstly tomography, the X-ray transform [17] with a

parallel beam geometry. Secondly, deconvolution with a 5× 5 Gaussian kernel. Lastly,

compressed sensing where y = Ax is an under-determined linear system where A is

an Rm×n Gaussian random matrix, x ∈ Rn is a vectorised image and n � m, see for

example [24]. In each case zero-mean Gaussian noise with standard deviation σ is added

to the data. The forward operators were implemented using the operator discretisation

library (ODL) [2] in Python, accessing scikit–learn [67] for the tomography back-end.

We consider variational regularisation methods in the form of (2) and (7) with

Ly(Ax) = ‖Ax − y‖22. To match the literature themes, we compare three different

methods: hard, F (u) = ι{0}(u) and RZ(z) = ‖z‖22; relaxed, F (u) = ‖u‖22 and
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RZ(z) = µ‖z‖22; and sparse, F (u) = ‖u‖1 and RZ(z) = µ‖z‖22, where µ is an additional

regularisation parameter. We compare with regularisers independent of the generator:

Tikhonov regularisation, RG(x) = ‖x‖22, for the convolution and tomography examples

and TV regularisation [72], for the compressed sensing example.

The optimisation algorithms are given in the appendix. Hard and Tikhonov are

optimised using gradient descent with backtracking line search, Algorithm 1. TV

regularisation is implemented using the Primal-Dual Hybrid Gradient method [18].

For relaxed, alternating gradient descent with backtracking is used, see Algorithm 2.

Finally, for sparse, the 1-norm is not smooth, and so Proximal Alternating Linearised

Minimisation (PALM) [12] with backtracking, Algorithm 3, is used to optimise the

equivalent formulation minu∈X ,z∈Z ‖A(G(z) + u)− y‖22 + λ (‖u‖1 + µ‖z‖22). In all cases,

initial values are chosen from a standard normal distribution.

5.1. Deconvolution

Figure 7 shows solutions to the deconvolution inverse problem with added Gaussian

noise (standard deviation σ = 0.1) on the MNIST dataset. We test the relaxed, hard

and sparse methods with a GAN against Tikhonov and try a range of regularisation

parameters. Each reconstruction used the same realisation of noise affecting the data.

Hard gives good PSNR results despite not reaching the Morozov discrepancy value,

the expected value of the L2 norm of the added Gaussian noise [79]. For the hard

constraints reconstructions are restricted to the range of the generator and we do not

expect the data discrepancy to go to zero as λ decreases. In the relaxed and sparse

constrained reconstructions, for smaller values of λ the solutions tend towards a least

squares solution which fits the noise and is affected by the ill-posedness of the inverse

problem. The additional variation in the choice of µ, as shown by the additional coloured

dots, has little effect for smaller values of λ.

Figure 8 again shows a deconvolution problem with added Gaussian noise (standard

deviation σ = 0.1) on the MNIST dataset. We choose the hard reconstruction for the three

different generator models and show three random initialisations in Z. Regularisation

parameters were chosen to maximise PSNR. The best results are given by the AE and

the VAE. The GAN has failed to find a good value in the latent space to reconstruct

the number three. The choice of initial value of z significantly affects the outcome of

the reconstruction in the GAN case.

5.2. Compressed sensing

Consider the compressed sensing inverse problem (m = 150 measurements) with

added Gaussian noise (standard deviation σ = 0.05) on MNIST images. We choose

regularisation parameters that optimise PSNR over 20 test images. Figure 9 includes a

table with the PSNR results on an additional 100 test images. Due to the cartoon like

nature of the MNIST digits, TV regularisation is particularly suitable, however VAE and
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Figure 7: Solution of the deconvolution problem on MNIST with an eight-dimensional

GAN. The plot shows the L2 reconstruction loss against regularisation parameter choice

λ in comparison with the Morozov discrepancy value in black. Differing choices for µ

are plotted as additional markers. The image plots correspond to the parameter values

shown by the grey lines and include the PSNR values.

(a) GT (b) AE (c) VAE (d) GAN

Figure 8: Comparisons between the three generators, with eight-dimensional latent

space, for the deconvolution problem. Reconstructions use the hard method. The plot

shows 3 different initialisations for each generator. The ground truth (GT) is given on

the left, the top line shows the reconstruction and the bottom line the residuals with

the PSNR values.

AE hard and VAE relaxed are competitive with TV. For more context, example plots

for the the VAE and TV reconstructions are given in Figure 9.

To give an indication of computational cost, Tikhonov reconstruction on the

compressed sensing inverse problem on the MNIST dataset took on average 32 iterations

of backtracking until the relative difference between iterates was less than 10−8. In

comparison, the hard and relaxed took on average 54 and 325 backtracking steps,

respectively, without random restarts. The algorithms took up to 1 second for Tikhonov,

5 seconds for hard and 10 seconds for relaxed.
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Generative Model

Method AE VAE GAN None

Relaxed 19.31 ± 2.26 20.07 ± 1.66 17.12 ± 1.67

Sparse 19.52 ± 2.72 21.08 ± 3.16 17.06 ± 2.5

Hard 21.84 ± 4.09 22.33 ± 4.17 16.93 ± 2.57

TV 21.54 ± 1.32

Figure 9: Results compare the three different regularisers and three different

methods against the unlearned TV reconstruction on the compressed sensing inverse

problem. The table shows the mean and standard deviations of PSNR values of

100 reconstructions. The plots show three example solutions, comparing the VAE

reconstructions to TV reconstruction. The left column shows the ground truth, even

columns the reconstructed images and odd columns the residuals with the PSNR values.

5.3. Tomography

Taking the tomography inverse problem with added Gaussian noise (standard deviation

σ = 0.1), Figure 10 includes a table which gives the average and standard deviation

for the PSNR of 100 reconstructed Shapes images. The regularisation parameters were

set to maximise the PSNR over a separate dataset of 20 test images. The GAN has

a particularly poor performance but the AE and VAE results are all competitive with

TV. Example reconstructions for the AE methods and TV reconstruction are given in

Figure 10. The generative regulariser gives a clear rectangle and circle while the TV

reconstruction gives shapes with unclear outlines and blob like artefacts. In terms of

computational cost, Tikhonov took on average 157 iterations of backtracking until the

relative difference between iterates was less than 10−8. In comparison, the hard and

relaxed took on average 37 and 255 iterations, respectively, without random restarts.

The algorithms took up to 40 seconds for Tikhonov, up to 12 seconds for hard and up to

60 seconds for relaxed.
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Generative Model

Method AE VAE GAN None

Telaxed 30.70 ± 1.59 28.79 ± 0.71 24.20 ± 0.49

Sparse 33.12 ± 0.80 33.09 ± 0.89 22.72 ± 1.80

Hard 33.17 ± 0.80 32.92 ± 0.95 22.92 ± 2.10

TV 29.94± 0.75

Figure 10: Results compare the three different regularisers and three different methods

against the unlearned TV reconstruction on the tomography inverse problem. The

table shows the mean and standard deviations of PSNR values of 100 reconstructions.

The plots show five example reconstructions, comparing the AE reconstructions to

TV reconstruction. The left column shows the ground truth, even columns the

reconstructions and odd columns the residuals with the PSNR values.

5.4. Out-of-Distribution Testing

We augment the Shapes dataset, creating a shapes+ dataset, with the addition of

a bright spot randomly located in the circle. We then take the Tomography inverse

problem on the shapes+ dataset with added Gaussian noise (standard deviation σ =

0.05). For a generative regulariser we use sparse, with F (x) = ‖∇x‖1, the TV norm.

Crucially, the VAE generator used was trained only on the standard Shapes dataset,

without bright spots. We compare with standard TV reconstruction. The regularisation

parameters were chosen to maximise the PSNR on 20 ground truth and reconstructed

images. The mean PSNR over 100 test images for the sparse case is 32.83 with standard

deviation 0.65 and for the TV reconstruction is 32.01 with standard deviation 0.67.

Figure 11 show five reconstructions. The sparse deviations allow reconstruction of the

bright spot demonstrating that generative regularisers can also be effective on images

close to, but not in, the training distribution.

5.5. FastMRI Dataset

We also train a VAE to produce knee FastMRI images. The VAE architecture is based

on Narnhofer et al . The FastMRI knee dataset contains data 796 fully sampled knee



19

Figure 11: Tomography inverse problem on random images from the shapes+ dataset.

It compares the use of sparse method, where sparsity is measured in the TV-norm,

with a standard TV reconstruction. The generator is a 10 dimensional VAE trained on

Shapes images. In the final column the part of the reconstruction lying in the range of

the generator is coloured red and the sparse addition yellow.

MRI magnitude images [50, 87], without fat suppression. We extract 3,872 training and

800 test ground truth images from the dataset, selecting images from near the centre

of the knee, resize the images to 128 × 128 pixels and rescale to the pixel range [0, 1].

The FastMRI VAE models took approximately 12 hours to train on the same system as

above.

Results for the tomography inverse problem with added Gaussian noise of varying

standard deviation are given in Figure 12. For each image and noise level, the same

noise instance is used for each reconstruction method, and additionally, for each method,

a range of regularisation parameters are tested, and the reconstruction with the best

PSNR value chosen. The plot shows how the PSNR values, averaged over 50 test images,

vary with noise level. The relaxed method gives the best PSNR values, outperforming

Tikhonov although with larger variance. The sparse method curve has a similar shape to

Tikhonov, but performs consistently worse suggesting that this choice of deviations from

the generator is not suited to this dataset, generator or inverse problem. We see that for

the hard method the results are consistent across the range of noise levels, not improving

with reduced noise. The example images reflect the data with the hard reconstruction

doing comparatively better with larger noise levels, but the relaxed method capturing

more of the fine details at the lower noise level.
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Figure 12: Reconstructions of the tomography inverse problem with additive Gaussian

noise of varying standard deviations. Regularisation parameters are chosen to maximise

PSNR value for each image. The left shows the average PSNR values, taken over 50 test

images, with the standard deviation in the error bars and the right shows one particular

example reconstruction with PSNR values.

6. Summary, Conclusions and Future Work

This paper looked at the use of a generator, from a generative machine learning model, as

part of the regulariser of an inverse problem. We named these generative regularisers.

Generative regularisers link the theoretically well-understood methods of variational

regularisation with state-of-the-art machine learning models. The trained generator

outputs data similar to training data and the regulariser restricts solutions (close) to

the range of the generator. The cost of these generative regularisers is in the need for

generative model training, the requirement for a large amount of training data and the

difficulty of the resulting non-convex optimisation scheme. Weighing up the costs and

benefits will depend on the inverse problem and the availability of data.

We compared three different types of generative regularisers which either restrict

solutions to exactly the range of the generator or allow small or sparse deviations. We

found that in simpler datasets the restriction to the range of the generator was successful.

Where the ground truth was more complex then allowing small deviations produced the

best results. A key benefit of generative regularisers over other deep learning approaches

is that paired training data is not required, making the method flexible to changes in the

forward problem. We demonstrated the use of generative regularisers on deconvolution

and fully sampled tomography problems, both with gradually decaying singular values

of the forward operator; and compressed sensing, with a large kernel and non-unique

solutions.

The training of the generator is crucial to the success of generative regularisers, and
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a key contribution of this report is a set of desirable properties for a generator. Numerical

tests linked to these properties were discussed and applied to three generative models:

AEs, VAEs and GANs. None of these models fulfil the criteria completely. We observed

known issues such as mode collapse and discriminator failure in the GAN, blurry images

in the VAE and the lack of a prior in the AE. In the inverse problem experiments in

this paper the AE and the VAE yielded the most consistent results. The success of the

AE, despite the lack of prior on the latent space, surprised us. We suspect the implicit

regularisation on the model from the architecture and initialisations helped making the

AE a usable generator. The GAN models did worst in the inverse problem examples:

they generally seemed more sensitive to initialisation of the non convex optimisation,

making the optimal point in the latent space difficult to recover.

This paper focused on training the generative model first and then subsequently

using the generative regularisation to solve inverse problems. The benefit of this split

approach is that the model does not need retraining if there are changes in the forward

problem. A further advantage is that the field of generative modelling is growing quickly

and any improvements to generators can be directly plugged into these methods. An

interesting direction for future work would be to consider training (or refining) generative

models with a particular inverse problem in mind.
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[1] Jonas Adler and Ozan Öktem. “Deep Bayesian Inversion”. In: ArXiv Preprint

(2018). arXiv: 1811.05910.

[2] Jonas Adler et al. Operator Discretization Library (ODL). 2017.

[3] Michal Aharon et al. “K-SVD: An algorithm for designing overcomplete

dictionaries for sparse representation”. In: IEEE Transactions on Signal Processing

54.11 (2006), pp. 4311–4322.

[4] Rushil Anirudh et al. “An Unsupervised Approach to Solving Inverse Problems

using Generative Adversarial Networks”. In: ArXiv Preprint (2018). arXiv: 1805.

07281.

[5] Martin Arjovsky et al. “Wasserstein generative adversarial networks”. In: ICML.

2017, pp. 298–321.

https://arxiv.org/abs/1811.05910
https://arxiv.org/abs/1805.07281
https://arxiv.org/abs/1805.07281


REFERENCES 22

[6] Sanjeev Arora et al. “Do GANs Learn the Distribution? Some Theory and

Empirics”. In: ICLR (2018), pp. 1–16.

[7] Simon Arridge et al. “Solving inverse problems using data-driven models”. In:

Acta Numerica 28 (2019), pp. 1–174.

[8] Muhammad Asim et al. “Blind image deconvolution using pretrained generative

priors”. In: BMVC. 2020.

[9] Matthias Bauer and Andriy Mnih. “Resampled priors for variational autoen-

coders”. In: AISTATS 2019 - 22nd International Conference on Artificial Intelli-

gence and Statistics. PMLR, 2020, pp. 66–75.

[10] Martin Benning and Martin Burger. “Modern regularization methods for inverse

problems”. In: Acta Numerica 27.27 (2018), pp. 1–111. arXiv: 1801.09922.

[11] Yoeri E. Boink and Christoph Brune. “Learned SVD: solving inverse problems via

hybrid autoencoding”. In: ArXiv Preprint (2019). arXiv: 1912.10840.
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Appendix A. Optimisation Algorithms

Algorithm 1 Gradient Descent with Backtracking to solve minz f(z).

1: Initialise z0, L > 0, 0 < η0 < 1, η1 > 1.

2: for i = 1, ..., K do

3: Let z̃(L) := zi−1 − 1
L
∇f(zi−1)

4: while f(z̃(L)) ≥ f(zi−1)− 1
2L
‖∇f(zi−1)‖22 do

5: L = Lη1

6: zi = z̃ and L = Lη0.
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Algorithm 2 Alternating gradient descent with backtracking to solve minz,x f(z, x).

1: Initialise z0 and x0, Lz > 0,Lx > 0, 0 < η0 < 1 and η1 > 1

2: for i = 1, ...., K do

3: Let z̃(Lz) := zi − 1
Lz
∇f(zi, xi)

4: while f(z̃(Lz), xi) ≥ f(zi, xi)− 1
2Lz
‖∇f(zi, xi)‖22 do

5: Lz = Lzη1

6: Let zi+1 = z̃(Lz) and then Lz = Lzη0

7: Let x̃(Lx) := xi − 1
Lx
∇f(zi+1, xi)

8: while f(zi+1, x̃(Lx)) ≥ f(zi+1, xi)− 1
2Lx
‖∇f(zi+1, xi)‖22 do

9: Lx = Lxη1

10: Let xi+1 = x̃(xL) and Lx = Lxη0

Algorithm 3 PALM with backtracking to solve minz,u f(z, u) + g1(z) + g2(u). Define

proxh(z) = arg minx{h(x) + 1
2
‖x− z‖22}.

1: Initialise z0, u0, Lz > 0, Lx > 0, 0 < η0 < 1 and η1 > 1.

2: for i = 1, ...K do

3: Let z̃(Lz) := prox 1
Lz
g1

(zi − 1
Lz
∇zf(zi, ui))

4: while f(z̃(Lz), ui) > f(zi, ui) +∇zf(zi, ui)
T (z̃(Lz)− ui) + Lz

2
‖z̃(Lz)− zi‖22 do

5: Lz = Lzη1

6: Let zi+1 = z̃(Lz) and then Lz = Lzη0

7: Let ũ(Lu) := prox 1
Lu

g2
(ui − 1

Lu
∇uf(zi+1, ui))

8: while f(zi+1, ũ(Lu)) > f(zi+1, ui)+∇uf(zi+1, ui)
T (ũ(Lu)−ui)+ Lu

2
‖ũ(Lu)−ui‖22

do

9: Let ui+1 = ũ(Lu) and then set Lu = Luη0

Appendix B. Generative Model Architectures

The architectures for the three different generative models, for the different datasets are

given in this Appendix.
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Figure B1: Definitions used in Figure B2, B3 and B4.

Figure B2: The architectures for the 3 generative models, AE, VAE and GAN, for the

MNIST dataset. The convolution block definitions are given in Figure B1.

Figure B3: The architectures for the 3 generative models, AE, VAE and GAN, for the

Shapes dataset. The convolution block definitions are given in Figure B1.
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Figure B4: The architectures for the knee dataset VAE. The convolution block

definitions are given in Figure B1.
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