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Abstract

We present a novel approach to Bayesian inference and general Bayesian computa-
tion that is defined through a recursive partitioning of the sample space. It does not
rely on gradients, nor require any problem-specific tuning, and is asymptotically
exact for any density function with a bounded domain. The output is an approx-
imation to the whole density function including the normalization constant, via
partitions organized in efficient data structures. This allows for evidence estimation,
as well as approximate posteriors that allow for fast sampling and fast evaluations
of the density. It shows competitive performance to recent state-of-the-art methods
on synthetic and real-world problem examples including parameter inference for
gravitational-wave physics.

1 Introduction

Bayesian methods require the computation of posterior densities, expectations and model evidence.
In all but the simplest conjugate models, these calculations are intractable and require numerical
approximations to be made. In this work, we propose sample-efficient and scalable construction of
discrete approximations to black-box continuous density functions as a means to provide such results
with one simple-to-use algorithm. In practice, density functions are typically unnormalized joint
distributions of data and parameters, where the posterior distribution or model evidence is of interest.
In this work, the true density function is assumed explicitly unknown or non-differentiable, meaning
it can only be point-wise evaluated. The output is a piece-wise constant approximation of the function,
organized in data structures allowing efficient operations. With this, we obtain properties that are
typically only associated with standard families of parametric distributions, such as fast sampling,
fast density evaluations, and tractable quantities like entropy.

Motivation for use cases of this algorithm can be found in natural science research areas such as
gravitational-wave physics [1, 2, 3]. In GW research, scientific knowledge is often expressed in
the form of physically motivated likelihood functions and priors [4]. An increasing sophistication
has brought challenges from an inference standpoint. Tractable gradients are often missing, the
functions may exhibit undefined (or zero density) regions, and the induced density surfaces tend
to be multi-modal, discontinuous, have mass concentrated in tiny regions, and exhibit complicated
correlations. As a consequence, inference can be prohibitively slow even for problems of around
ten dimensions. Simple techniques such as standard rejection sampling are typically infeasible
due to small typical sets, requiring a prohibitively large number of function evaluations to obtain
representative samples. Markov Chain Monte Carlo methods, generally popular for their asymptotic
guarantees [5] and strengths in high dimension [6], struggle in handling the multi-modality present in
these problems. Furthermore, MCMC does not provide evidence estimation, which often is of crucial
importance in scientific applications and elsewhere.

A popular family of methods to deploy instead is Nested Sampling [7, 1], known for performing well
on multi-modal and degenerate posteriors, as well as additionally providing evidence estimation. Still,
the computation required to run an experiment can often be impractical, such as weeks on a cluster.
Re-sampling, density re-weighting and local density integration have been identified as important
tasks to save computation, when considering different priors [3] or estimating equations of state [8].
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Currently these tasks, as well as parameter and evidence estimation, require a portfolio of different
algorithms with various tuning parameters, requiring significant expertise and effort to obtain reliable
results.

In this paper, we present an efficient approach to general Bayesian computation and inference based
on recursive partitioning of the domain. The algorithm is designed for black-box settings and to
handle all the discussed challenges. Our approach is, by design, asymptotically exact and has no
sensitive free parameters; this leads to an algorithm with a robust performance for general density
functions that is easy to use. Our method defines a sequential decision process sampling the integrand,
prioritizing regions of high probability mass within a recursive refinement of the approximation,
filling the sample space. The decision process has similar algorithmic efficiency as MCMC and nested
sampling, with a time complexity allowing for sub-millisecond decision times and high scalability
to a large number of observations to obtain sufficient precision. However, differently from these
approaches, our method provides a density function approximation defined over the whole domain,
that can be sampled and re-sampled at a very low constant cost per sample, or used to produce an
approximation to expectations of any function with respect to the approximated density function.
Naturally, this includes constant functions, and thus evidence can be estimated as well. We show
that our approach can be turned into an algorithm that performs competitively compared with recent
state-of-the-art methods while retaining the above benefits.

Full paper: https://arxiv.org/abs/2010.13632

Figure 1: Partitions produced using DEFER, shown after 53, 303, 2 101, and 100 003 density
function evaluations, respectively.

2 Methodology

Let f : Ω→ R+ be an explicitly unknown, continuous density function defined on a bounded sample
space Ω ⊂ RD, which can be evaluated for any θ ∈ Ω. Our goal is to construct a representation
of the function that enables tractable performance of down-stream tasks such as estimation of its
integral, expectations of functions, and constant time re-sampling with support over the full domain
Ω. A density function implies a distribution

P(θ) =
f(θ)∫

θ∈Ω
f(θ)dθ

=
f(θ)

Z
, (1)

where Z constitutes the unknown normalizing constant. If f is formed as the joint distribution of
data and parameters θ conditioned on known data D, we refer to Z as the evidence and P(θ) as the
posterior distribution.

Representation of f̂ Our approximation f̂ will be represented by the combination of two data
structures. Firstly, a non-overlapping partitioning Π := {Ωi} of the domain Ω in an array, with an
observed value of f at each respective centroid θi of the corresponding partition Ωi, that represents a
Riemann sum over the domain with hyper-rectangular, non-overlapping partitions of non-constant
side lengths as illustrated in Fig. 1. Secondly, a tree-structure in which these partitions are organized,
forming a search tree over volumetric objects. Together, these permit integrals to be approximated
by summation as in quadrature, density queries of θ or partitions by tree search, and constant-time
sampling. The latter is achieved by sampling the index of a partition, using the alias method for
categorical distributions [9], followed by uniform sampling within the partition.

Quality of the approximation f̂ The quality of the approximation over a partition in Ωi is deter-
mined by the absolute error of mass. This minimizes errors in down-stream tasks such as obtaining
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Algorithm 1: DEFER
Input: General density function f defined over Ω with unknown normalization constant Z
Output: Approximation f̂ , Ẑ, as specified by the produced partitioning ΠT

1 set t = 1 and initial partitioning Π1 = {Ω} ;
2 while Nt ≤ Nmax do
3 {Ωi} = to_divide [ Πt];
4 divide each partition Ωi, each one resulting in {Ωj} new partitions;
5 add all sets of {Ωj} into Πt remove the divided partitions {Ωi} from Πt;
6 set t→ t + 1 and update data structures;
7 end
8 return ΠT ;

samples proportional to f , or estimating its integral. The same is true for expectations of functions
under f where the functional form of the quantity is not specified ahead of time. In the recursive
structure, this applies to each partition individually, as well as the domain as a whole.

Iterative construction requirements of f̂ We now consider how to obtain a sufficiently close
approximation to f in an efficient manner. We address this in three ways. Firstly, we prioritize where
in the domain Ω the approximation should be refined. Secondly, we allow for a large number of
partitions to obtain high resolution in areas of high mass. Lastly, we provide guarantees that the
algorithm asymptotically approaches f . In a non-overlapping space partitioning, the first requirement
translates into a decision-problem over which partitions to divide at a given step in sequence. The
second requirement translates into making the decisions in an efficient manner, with an algorithmic
complexity that allows for fast decisions that remain fast also for a large number of partitions. And
lastly, for the asymptotic behaviour, guaranteeing that all partitions will eventually be divided. The
outline of the algorithm is shown in Alg. 1. The partition division rule, algorithmic complexity
analysis, and details of the procedure is found in the appendix A.

Figure 2: Shown on the left is an illustrative comparison to using standard rejection sampling for
parameter inference on a Gaussian distribution in 5D, with a true scale parameter of 1/20 and 1/100

of the domain sides, corresponding to small and large marker sizes, respectively. The rejection
methods use proposals drawn uniformly or in a Sobol sequence (Quasi-Monte Carlo), respectively.
Shown on the right is a comparison to using a uniform grid for evidence estimation on the Student’s
t-distribution in 2D, 4D, 6D, and 10D corresponding to the markers of increasing size. The true
scale parameter corresponds to 1/100 of the domain sides. Both experiments were run 20 times with
uniformly sampled true means, and the Student’s t-distribution has 2.5 + (D/2) degrees of freedom.

3 Experiments

As discussed in Section 1, the focus of the paper is on obtaining an efficient algorithm to produce
approximations to density functions with support over the whole sample space, which in turn can be
used for a number of downstream tasks. However, it is crucial that the algorithm as a minimum is
comparable to modern Bayesian methods available for individual tasks, such as posterior sampling
and evidence estimation. By comparing with such methods, we can evaluate DEFER in terms of
sample-efficiency, computational efficiency in practice, as well as confirm the quality of the resulting
approximations.
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Ground truth slice s. PTMCMC DNS DEFER slice s. PTMCMC DNS DEFER

f θ ∼ f θ ··∼ f θ ··∼ f θ ··∼ f f̂ θ ∼ f̂ θ ··∼ f θ ··∼ f θ ··∼ f f̂ θ ∼ f̂

Figure 3: Robustness to characteristics in the density surface. In the upper row, a surface with heavy
correlations and multi-modality is shown, and in the lower row a surface with discontinuities and a
valley. The output of the methods is shown after approx. 150 (left) and 1k (right) density evaluations
for the first function, to illustrate the relative inefficiency of MCMC in capturing modes. The same is
shown after approx. 30 and 100k evaluations for the second function, to illustrate the early coarse
approximation by DEFER as well as its asymptotic guarantees in contrast to DNS. As different to the
other methods, DEFER outputs a function f̂ .

Figure 4: Parameter estimation for gravitational-wave physics.
Shown are histograms of the two-dimensional marginals of a
6D parameter inference problem [1]. Upper row: ground truth
estimated by long-running nested sampling as in the paper.
Second row: samples drawn from the partitioning after 200k
evaluations. Bottom row: samples drawn from the partitioning
after 2M evaluations.

Figure 5: Time-series
forecasting using Gaus-
sian Processes with the
Spectral Mixture [10] ker-
nel. The data is shown in
black, and posterior GP
samples in blue.

Before we begin with the main comparisons, we highlight the problem with using simple methods
such as standard rejection sampling for posterior sampling, and grid partitioning, which at first glance
may seem practical to deploy to also construct function approximations. In typical, realistic scenarios,
the likelihood function causes the typical set of the posterior to be concentrated to small regions. As
illustrated in Fig. 2, uninformed proposal distributions become infeasibly inefficient already in low
dimension (5D in the example) when the typical set of the posterior is even just moderately small.
This is a consequence of the vast number of proposals needed on average per proposal landing in the
typical set (≈ 107 in the example). In contrast, DEFER, using dynamic allocation, is significantly
less affected by the size of the typical set. A similar example for evidence estimation is also shown.

We now proceed with the main comparisons. We choose dynamic nested sampling (DNS) [7], slice
sampling [11], and parallel-tempering MCMC (PTMCMC) [12] as the baselines because they are
easy-to-use or able to handle multi-modality and work in absence of gradient information. DNS is
a state-of-the-art instantiation of nested sampling, known for performing well on multi-modal and
degenerate posteriors with relatively little tuning. PTMCMC uses parallel-tempering to improve
MCMC for multi-modality handling. Slice sampling is chosen for its ease-of-use, which is also a
feature of DEFER. We used the following implementations: DNS [13], slice sampling [14], and
PTMCMC [12]. For details, see Section D in the appendix.

Illustrative synthetic density functions We first test the robustness of the inference methods against
challenging properties (see Fig. 3) including multi-modality, strong correlations, and discontinuities,
on low dimensional examples that are easy to visualize. We illustrate the asymptotic guarantees of
DEFER in the presence of such properties in the density surface. We also note its sample-efficiency
in representing all modes when compared to MCMC, and in capturing detail when compared to both
DNS and the MCMC methods. In one of the shown examples DNS fail to recover the ground truth,
which may be related to the algorithm’s determination of likelihood contours [7].

Real-world problems We continue with a problem from gravitional-wave (GW) physics. The
goal of GW research is to understand events such as mergers of compact objects [2], for example
binary black-holes [1]. As these events are rare and not repeatable, Bayesian statistics is widely
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Figure 6: Upper row: Median absolute error of logZ. Lower row: Median absolute error of the
entropy H(θ). For both metrics, shaded areas are 95 the % CI of the median.

used for analysis. Models describing these events are expressed as physically motivated likelihood
functions and priors [4], often without available gradients, and the density surfaces are typically
complicated, multi-modal, or discontinuous. As discussed in Section 1, inference on these problems
be prohibitively slow, warranting tasks such as re-sampling, density re-weighting and local density
integration. DEFER outputs a density function approximation with support for all these tasks; the
latter via making use of the domain-indexed search tree over partitions. We apply DEFER to a
simulated signal example from [15] similar to [1]. Shown in Figure 4 are all the 2D marginals of a
six-dimensional problem using the ‘IMRPhenomPv2’ waveform approximant. Inferred parameters
are, for example, the luminosity distance, and the spin magnitudes of binary black-holes. We note the
complicated interactions between parameters, showing the importance of handling multi-modality
and strong correlations. Importantly, DEFER is able to handle the surface well without any tuning
parameters. Full corner plots, and results using PTMCMC and DNS, are found in the appendix.

Apart from inferring a complex posterior surface, we also compare the quality of the posterior
samples in terms of prediction accuracy. We consider a time-series forecasting problem because the
posterior is often complex and multi-modal. We use a Gaussian process (GP) time-series regression
model with a spectral mixture kernel (SMK) [10]. SMK can approximate any stationary kernel
including periodic ones by learning the parameters of a Gaussian mixture to represent the kernel
spectral density [16]. However, inference of the parameters of the mixture can be difficultfas the
induced density surface is multi-modal. We use the airline passengers data [10] and use the first
60% of months for training and the rest for test. The GP model has three mixture components plus a
linear slope, which translates into a 10D parameter inference task. With a budget of 50k function
evaluations, the negative log-likelihoods on the test data are 377.66, 365.97, 236.89 and 205.50, for
slice sampling, PTMCMC, DNS and DEFER, respectively. DEFER performs significantly better than
other methods (see the Fig. 5 for the prediction by DEFER). Details and more plots of predictions
using all methods are found in Section D.3 in the appendix.

Sample-efficiency and quantitative comparisons We use evidence and parameter estimation to
give quantitative comparisons. For evidence estimation, we measure the median absolute error in log
evidence (or logZ) over 20 runs with various budgets. For parameter estimation, we measure the
error in estimated differential entropy, due to lack of summary statistics for multi-modal distributions.
Results for a few functions with various challenging characteristics are shown in Fig. 6, with more
examples available in Section D.4 in the appendix. We remind the reader that although the surface
of the approximation always tends towards the true surface, integral estimates can oscillate slightly
as local overestimations and underestimations can cancel out to some degree. DEFER is able to
match and typically significantly surpass the performance of DNS. Especially in getting close to
the solution already at low NT budgets, sometimes needing order of magnitudes fewer function
evaluations, but it also performs better using the higher NT budgets. The gaps between the methods
are noticeably larger for estimating differential entropy. Estimation of entropy is more sensitive to
the matching of the shape of a distribution, and not only its integral. On Canoe, DNS completely
misses the concentrated mass, but DEFER finds it after 100k evaluations, which leads to a sharp drop
in the error of both evidence and differential entropy.
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4 Broader Impact

Machine learning methods are integral components for a fast-growing number of applications. For
this development to continue and for machine learning methods to be applicable in critical scenarios,
our methods need to be interpretable. Bayesian methods are designed with interpretability at its core
through the principled formulation assumptions from which predictions can be interpreted. However,
this comes with a substantial computational penalty as numerical methods are required to address
computational intractabilities. Furthermore, the state-of-the-art numerical methods are challenging to
use without expert knowledge of both the problem at hand and the numerical algorithm. This leads
to significant challenges for users of machine learning methods to work on interpretable Bayesian
models.

The method we have proposed in this paper allows for robust and efficient Bayesian computations. Our
method provides similar or better performance compared to competing well-tuned approaches across
several tasks, importantly without the need to set a large number of problem-specific parameters. We
believe that by providing a robust, easy to use, and computationally efficient method for Bayesian
computation we can widen the acceptance of these machine learning methods to larger audiences.
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A Algorithm
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(a) Partioning definitions

θ1 θ2 θ3

θ6θ5θ4

Φlinear

H = {θ2,θ4}
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Figure 7: Illustration of partition division. (a) The domain Ω is divided according to a partitioning Π
composed of partitions {Ωi} with corresponding centroids {θi}. (b) Locally linear structure: High
mass partitions H = {θ2,θ4} define a linear subspace Φlinear used to find candidates for division
(e.g. θ1). (c) Local neighbourhoods: High mass partitions H = {θ5,θ10} define neighbourhood
D-balls Φballs used to find candidates for division (e.g. θ6,θ9, . . .).

Given the representation and requirements, we construct the approximation through an iterative
refinement procedure of a recursive tree data structure. The algorithm starts from the base case of
the whole sample space being one partition, with its density evaluated at the centre. The outline of
the algorithm is shown in Alg. 1. The approximation of f is parameterised using the data structures
presented in Section 2. The set of current partitions at a given iteration t in the sequence of decisions
is denoted by Πt. We define Nt := |Πt| to be the number of partitions at iteration t. At each iteration,
we divide partitions in Πt that meet any of three individually sufficient criteria to produce an updated
set of partitions Πt+1 (referred to as to_divide in Alg. 1). For details on the data structure updates
and how a partition is divided, we refer to Section C.1.

We now detail the three individually sufficient criteria for division, that we denote CR1 to CR3.
With the aim of robustness to multi-modality and degeneracies in f , to maintain an informed and
efficient exploration, we will re-interpret [17] from the global optimization literature. To check our
criterion for mass-based prioritization over the whole function, while avoiding explicit assumptions
of the Lipschitz constant, we will map it into a format that allows similar sub-routines to be used for
efficiently checking it. This first sufficient criterion (CR1) will also address the asymptotic guarantee
by eventually being fulfilled for all partitions. Following it, we will address additional criterion that
exploits structures of density functions, motivated for increased sample-efficiency in handling strong
correlations.

8



CR1: Sufficient partition division criterion 1 A partition Ωk will be divided if there exists any
rate-of-change constant K̄ > 0 such that both

Vk ·
(
f(θk) + K̄

dk
2

)
≥ Vi ·

(
f(θi) + K̄

di
2

)
, (2)

∀ i ∈ [1, Nt]

and Vk ·
(
f(θk) + K̄

dk
2

)
≥ β Ẑ

Nt + 1
, (3)

where Ẑ =
∑Nt
k=1 Ẑk =

∑Nt
k=1 Vk ·f(θk) is the normalizing constant of the approximation, Vk is the

volume of the partition Ωk, θk is the centroid of the partition, and dk is the diameter of the partition
dk = supθi,θj∈Ωk

||θi− θj ||. Here, β is a positive parameter specifying what constitutes a non-trivial
amount of upper bound mass of a partition in relation to the current estimate of average mass; we
fix β = 1 for all the experiments in the paper. Note that β only has the role of controlling precision
relative to the average partition mass contribution so far, and can in general be left at default.

The first statement (Eq. 2) is true if the partition of index k has an upper bound on its true mass
greater or equal to the upper bound of all the partitions under any choices of K̄ > 0. The second
statement (Eq. 3) is true if the partition, under that choice of K̄, has an upper bound on the true mass
that constitutes a non-trivial amount of mass.

We check the first statement using the following. After construction of a partition Ωj , with parameters
(f(θj),θj ∈ Ωi), we map it to ordinate Vj · f(θj) and abscissa Vj · dj/2 in a 2D space, see illustration
next to Eq. 2 and 3. This coordinate will be stored in a data structure for use at future iterations. The
criterion will be fulfilled for a partition Ωk if and only if its corresponding coordinate is a member of
the upper-right quadrant of the convex hull (URQH) in this 2D space.

The second statement is checked by considering the upper bound of the K̄ that a given partition
Ωk used to fulfil the first statement. This would be the K̄ that, were it any larger, would result in
the right hand neighbor on the URQH having a larger upper bound of the mass Vi+1 · (f(θi+1) +

K̄ di+1

2 ) > Vi · (f(θi+1) + K̄ di
2 ), which would violate the first criterion. In other words, we have

K̄upper
i := 2Vi+1f(θi+1)−Vif(θi)

Vidi−Vi+1di+1
, except for the right-most member which will have positively infinite

upper-bound on K̄. As such, statement two is fulfilled if Vi · (f(θi) + K̄upper
i

di
2 ) ≥ β Ẑ

Nt+1 is true.

Fulfilment of asymptotic guarantee As of Eq. 2 & 3, it is clear that the right-most member of
URQH (RM-URQH) will always be divided as its upper bound is positively infinite. Furthermore, as
the RM-URQH will always be among the partitions with the largest diameter, the largest diameter
will asymptotically tend to zero. As a consequence, all partitions will eventually be divided, which in
turn guarantees asymptotic convergence to f as of a partitioning of the whole domain constitutes a
Riemann sum.

Checking these statements has an average time complexity of O(U logU + logNt) where U is the
number of unique abscissas. As will become clear, due to all the symmetries produced during the
recursive partitioning of the space, the number of unique abscissas U will be very small in practice
and virtually independent of Nt.

Exploiting characteristics of density functions We now add search behaviour to exploit desirable
heuristics targeting both linear correlations and the clustering of mass (based on proximity in Ω); in
contrast to just carrying out division when CR1 is true, these behaviours consider non axis-aligned
directions.

Set of high mass partitions We define H as a set of high (relative) mass partitions at the current
iteration. A partition Ωj will be a member of this set when

Ẑj ≥ ẐM and Ẑj ≥ α
Ẑ

Nt + 1
(4)
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subject to the constraints that 1 < |H| ≤M and that their centroids are non-collinear. ẐM is defined
to be the mass of the partition of theM th highest mass, Ẑ∗ = V∗ ·f(θ∗), and α is a positive parameter
specifying what constitutes a large mass ratio relative to the average partition. In practice, we set
M = min(5, D) and fix α = 20 for all experiments in the paper.

Linear correlations Fig. 7(b) illustrates how we address linear correlations. Existing partitions
with a high estimated mass, relative to other partitions, are grouped in the set H and denoted with red
centroids. Were we to assume a linear correlation between the centroids in H , we may also assume
that high mass is more likely to concentrate along an affine subspace defined by linear combinations
of the centroids denoted Φlinear, the maroon line in the figure. Partitions intersecting this hyper-plane
are candidates for division.

CR2: Sufficient partition division criterion 2 Given the set H of high mass partitions, we
construct a finite set Rlinear of representer points based on the affine subspace constructed from linear
combinations of the centroids of the partitions in H that we denote Φlinear. Details on the representer
points are provided in Section C.2 in the appendix. A partition Ωk will be divided if any point
r ∈ Rlinear falls within the partition. That is, the set {r | r ∈ Ωk, r ∈ Rlinear} is not empty.

Neighbourhood correlations We will now address the neighbourhoods of the H partitions, illus-
trated in Fig. 7(c). The figure shows that we consider spatial proximity to elements of H through sets
of D-dimensional balls Φballs centred on elements of H . We define Φballs as the union of the interiors
of D-dimensional balls centred at respective centroid of the partitions H . The diameter of a given
D-ball corresponding to partition Ωj ∈ H is φdh, where φ is constrained to be φ > 1 to guarantee
that positions outside of Ωj exists in all directions from θj . A given φ leads to a volume ratio ν of Ωj
relative to the ball as ν = Vj ·Γ(D/2+1)/(

√
π
φdj
2 )D. In practice we fix φ = 1.2 in all experiments in the

paper.

CR3: Sufficient partition division criterion 3 As for the linear case, we take the set H of high
mass partitions and construct a discrete set Rballs of additional representer points based on spatial
proximity to the centroids in H , denoted Φballs, and check the condition analogously to CR2.

The time complexity of our check of the CR2 criterion has time complexity O(MD2 + logNt), and
the CR3 criterion has time complexity O(MD + logNt). As D is constant with respect to Nt and
M is upper bounded by D, we summarize this as time complexity of O(logNt).

Summary We have now addressed the criteria CR1 to CR3, describing the full algorithm Alg. 1.
The combined time complexity of a step t is O(logNt + U logU), which for an average number of
steps proportional toNT results in a total average time complexity of the algorithm asO(NT (logNT+

Ũ log Ũ)) where Ũ is the average number of unique abscissas. The total space complexity of the
algorithm is linear, i.e. remains proportional to the number of observations. For the choice of
representer points, complexity analysis derivations of all steps, and other algorithmic details, we refer
to Section C. In Fig 8 we show that Ũ is sufficiently small, and close to constant with respect to NT ,
resulting in a fast and scalable algorithm.

B Background

The need for and approach of substituting continuous distributions or processes with discrete
approximations exists in various forms in literature, such as in optimisation problems in eco-
nomics [18, 19, 20], or in engineering [21, 22]. These methods typically assume that the distribution
is known, often along with requirements of its parametric form. Also, a good discrete set of sample
points is assumed to be known, or that the problem is in one dimension [23], or that the discrete
set is small [24]. This makes our method have more in common with popular families of Bayesian
methods. However, differently from our method, these methods solve tasks in isolation, such as
typically posterior sampling, but not evidence estimation, and vice versa.

The literature provides several families of methods for posterior sampling. On one end of the spectrum
lie stochastic methods such as Markov Chain Monte Carlo (MCMC) that obtain samples via random
walks. The benefit is that they provide asymptotic guarantees given that only a few weak criteria [5]
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are met, and has shown to be effective in very high dimension where other strategies may struggle [6].
However, as by the definition of a Markov chain, MCMC is memory-less. The locally defined random
walks are known to struggle in handling multi-modality efficiently, as of the low probability per
step of leaving high-density regions. To address practical performance issues due to multi-modality,
techniques such as parallel-tempering [25, 26, 27] using many random walks at different temperatures
are often deployed. From a sample-efficiency stand-point, there are opportunities for improvement by
instead making globally informed decisions about where to evaluate the density function. In addition,
many of the used techniques have a large number of tuning-parameters that are hard to use in an
efficient manner for practitioners without significant experience, or in automated settings.

On the other end of the spectrum are deterministic methods such as Variational Inference (VI) [28, 29]
where an explicit approximation is formulated, leading to an optimisation problem. While variational
methods can often be made efficient and require much less tuning compared to MCMC methods, they
are, by construction, never exact and lack the guarantees of the stochastic approaches. In recent years
several approaches have been proposed that relaxes the explicit form of the approximation to one
implicitly represented using samples [30]. In either case, the optimisation problem of VI generally
requires differentiability and known gradients, which is not met in our setting.

A classic approach to estimating an integral numerically is through quadrature. These methods
partition the domain and convert the integral into a weighted summation of integrands at each partition.
By creating a partitioning of the full domain, quadrature methods provide asymptotic guarantees
by design. Furthermore, quadrature methods can be completely robust to the characteristics of the
function surface, such as discontinuities and zero density regions, as it is the domain partitioning that
drives the asymptotic behaviour. Importantly, this means that we can construct reliable algorithms
that require little or no tuning. The downside of such an approach is practical efficiency, and as such
naive quadrature rules are often used as an example to illustrate the curse of dimensionality.

A significant amount of work has been done to address the issues with the scalability of quadrature
methods in higher dimensions. One approach is to use a sparse grid formulation [31, 32] that
provides asymptotically the same coverage as dense grids. By introducing assumptions on the
smoothness of the function, a significant reduction in the number of needed function evaluations can
be achieved. In practice, these sparse grid formulations work well when the function is a low degree
polynomial with low-order interaction terms [33]. Bayesian Quadrature (BQ) methods [34, 35]
include a probabilistic model of the function. Making use of the function model, a sequential decision
process balancing exploration and exploitation is used to evaluate the integrand where it is believed
to be most informative of the unknown integral. With the “right” function model, these methods can
lead to a significant reduction of the number of needed function evaluations.

Treatment of inference as a sequential decision-problem more generally is found in the literature
of probabilistic numerics [36], where decisions are informed by observed quantities to estimate
latent quantities, BQ being one example of a method in this realm. This beneficial strategy was used
in a recent approach [37] where BQ and VI were combined to enable sample-efficient parameter
estimation; the motivating application considered very expensive likelihoods where only a small
number of density evaluations are available. The computational cost associated with updating the
model means that these methods are mainly suitable for scenarios where the evaluation of the
integrand is associated with a high cost. In this work, we will rely on a series of heuristics, which will
approximate the expensive decision-oriented methods, with the goal of retaining sample-efficiency
while maintaining a low cost of making decisions. We motivate this by the cost trade-off; at a
relatively low cost of evaluating the function, spending some extra evaluations can be worthwhile if
that can significantly reduce algorithmic cost. To put these costs in perspective, evaluating the density
function in typical inference scenarios comes at a cost in the range of milliseconds. In practice, this
means that we must aim for decision costs per evaluation that have a similar or lower cost. If this cost
remains within that range even for millions of evaluations, then the algorithm will be applicable to
many problems where sampling-based approaches like MCMC and nested sampling are popular.

C Algorithmic details

C.1 Data structures and associated updates

Search-tree To form the search-tree described in Section 3 of the paper, we store each partition
Ωi together with its associated density function observation f(θi) in a node. When a partition is
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Figure 8: Algorithmic time. Shown in the upper plots is the associated runtime cost of each
algorithm to decide where to evaluate the density function, for the Student’s t 10D density
function and gravitational-wave example, respectively. Shown on in the lower plot is the time
spent on evaluating the function versus the algorithm cost of respective method, with mean and
standard deviation across 20 runs using the various settings of function evaluation budgets NT .

divided (see Algorithm 1), a set of child nodes are created and stored in an array within the parent
node. Each partition (Ωi) is represented using two arrays; with the lower and upper bounds for each
dimension, respectively. From the limits, the associated centroid and volume of a partition can easily
be calculated.

A query for the unique leaf node that is associated with a given θ can be performed by traversing the
tree from the root. If a called node (starting from the root) have children, only one of the children can
(and must) be associated with θ, i.e. where θ ∈ Ωj . The correct child to call next is found using the
limits of the partition corresponding to the respective child. The procedure is repeated recursively
until the called node does not have any children; this means it is the leaf node that contains the
queried θ. The leaf node is returned, holding the associated partition together with a density value.

Convex hull check associated with CR1 The ordinate and abscissa described under CR1 in
Section 4 is stored in a hash map of heaps, i.e. where each entry of a hash table maps to a heap [38]
as its associated value. This data structure map is used to efficiently provide access to the maximum
ordinate partition per unique abscissa at every iteration t, which are kept sorted using the individual
heaps. These partitions are the only ones that have corresponding coordinates that may be part of the
URQH described, and the only ones that need to be a part of a convex hull calculation. The number
of unique abscissas is very small in relation to the total number of partitions due to all the symmetries
produced by the symmetric divide operation (see "Divide operation"); and remains near-constant for
higher numbers of partitions as a result of the algorithm. In practice in experiments, we noted that
the unique number of abscissa were rarely larger than 20 even after millions of partitions in any of
the up to ten-dimensional problems tested. This near constant behaviour will be evidenced by the
experiments in the "Runtime performance" section.

The hash function (forming the hash table key) is a floating-point hash on the abscissa. Each time a
partition is added (see Algorithm 1. in the paper) the associated coordinate needs to be added to this
data structure, and each time one is removed, it will also need to be removed from here. Note that
this data structure only keeps the coordinates of leaf nodes, i.e. nodes corresponding to the current
set of all partitions constituting the Riemann sum described in Section 3.

Current total mass and top M mass partitions At every step of the algorithm, we keep track of
the total mass estimate and the top M mass partitions, as required by the algorithm.

We implement this by aggregators which are updated at each include and exclude of a partition in
the leaf set. The leaf set is the partitions that cover the domain in a non-overlapping fashion at the
currently finest resolution, constituting the current Riemann sum. "Include" refers to the creation of a
new child node (and partition), and "exclude" to the removal of the previous (parent) node from this
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set. To easily keep track of all the updates a partition division should lead to, we wrap the "divide
function" in another function that after division (the forming of child partitions), makes all the related
updates, including the exclusion of the divided parent node.

The aggregator for the total mass keeps track of the accumulate sum (which we represent using a
128-bit float) where inclusion is addition and exclusion is subtraction. The aggregator for the top M
partitions keeps track of such a current set of size up to M , where set updates are handled within the
inclusion and exclusion functions.

C.2 Representer points

In Section 4 associated with CR2 and CR3 there are representer points to be chosen. These are used in
the algorithm to efficiently (and approximately) check for overlaps between respective partitions and
the two spaces Φlinear and Φballs, associated with CR2 and CR3 respectively. For each representer
point, a tree-search is performed (see Search-tree) to find the associated partition, which will be
divided. If a partition fulfils multiple sufficient criteria (CR1 to CR3), or in this case is "hit" by
multiple representer points, it will still only be divided once.

CR2 We begin with the determination of Φlinear followed byRlinear. To form the linear subspace
we carry out the following steps. Obtain the corresponding centroids ΘH of the H partitions as
stacked vectors. ΘH will now be used to form a basis for the (H − 1)-dimensional hyperplane being
Φlinear. Let θj be the centroid (column vector) among them closest to the center of the unit cube,
and E = ΘH,6=j − θj be the stacked basis vectors of the hyperplane of which we form an orthogonal
basis A. The orthogonal matrix A is determined from E using QR factorization (in Python available
through ’numpy.linalg.qr’). Let Ẽ be the re-scaled version of E having unit-norm. Now we can map
a vector u from a unit-cube onto the hyper-plane as θj + uAẼ.

From Φlinear a discrete set of points Rlinear is now to be chosen. We will concentrate the points
in particular on all lower-dimensional hyper-planes formed by all combinations of the H high
mass partitions, which in line with the assumed heuristic that mass tends to concentrate on linear
subspaces formed by these partitions. In practice this is implemented by ahead of time determining all∑S
s=1

(
M
s+1

)
combinations of indices up to M where s is the dimensionality of a lower-dimensional

hyperplane. These index combinations are then iterated through at runtime at step t, each one creating
a subset H∗ of high mass partitions forming a linear subspace; if a given set of centroids is colinear,
it is skipped. For each H∗ we add a representer point at their average location in Ω (the weighted
centre of the simplex they form). In addition, to cheaply emulate ’exploration’ of the linear subspaces
(and the constituent lower-dimensional linear subspaces), we add l representer points per H∗ by
sampling uniformly in a unit cube and map the points onto the corresponding linear subspace using
the procedure described above (we use l = 1 in all experiments).

CR3 We now address the choice of the discrete set of pointsRballs from Φballs. For each partition
in H , we sample b points uniformly within the corresponding D-ball using the Muller method [39].
In practice we set b = D in all experiments.

C.3 Algorithmic complexity analysis

For simplicity of analysis, we will assume that the number of iterations of the algorithm (Algorithm 1)
is proportional to NT . It will always be true that the number of iterations is less than NT , as multiple
partitions will be divided at each iteration, and also each partition division will yield multiple function
evaluations.

CR1 Updating the hash map of heaps for a new partition has time complexity O(log Nt
U ), where U

is the number of unique abscissas, as the heap (found in constant time using the hash map) provides
logarithmic time updates and Nt/U is the average number of elements in the heap. As Nt > U this
simplifies as the worst-case O(log Nt

U ) = O(logNt − logU) = O(logNt).

Retrieving all top ordinate partitions elements from this structure at a given iteration t has time
complexity O(U) as the hash table with U entries is traversed linearly and the root of each heap
is available in constant time. Using the U obtained coordinates the convex hull is computed in
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Figure 9: Multi-modality in the log density surface over the parameters of the Spectral Mixture
kernel. Shown is how the log density of the model changes with respect to each component mean
within the Gaussian mixture representing the spectral density of the kernel. The slicing is centred
around the (estimated) mode of the parameter posterior. The estimation of the posterior mode was
done using DEFER.

O(U logU) using Graham’s scan [40]. Following this, the upper-right quadrant of the hull is
obtained in O(U).

In summary we obtain the worst-case time complexityO(logNt +U logU) for checking this criteria
for all partitions at step t. The space complexity of the hash map of heaps data structure is linear with
respect to Nt.

CR2 The checking of this criterion entails computation associated with a potentially large constant
(wrt. Nt) number

∑S
s=1

(
M
s+1

)
of lower-dimensional linear subspaces. The number of partitions that

will be divided as a result grows proportionally to this constant, so we simplify the analysis to treating
one linear subspace and an associated constant set of representer points. The two largest terms come
from the QR factorization, with time complexity O(M2D), and the tree-search for the partition of a
representer point with time complexity O(logNt). The space complexity is O(M) of keeping track
of the high mass partitions. As D is constant with respect to Nt and M is upper bounded by D, we
summarize this as time complexity of O(logNt) and the space complexity is constant.

CR3 For the check of this criterion all up to M high mass partitions are sampled in O(MD) time,
and the tree-search for a partition is O(logNt). Analogous to CR2 we summarize this as a time
complexity O(logNt) and the space complexity is constant.

Total In total we obtain the time complexity O(logNt +U logU) of a step t and space complexity
O(Nt). For an average number of steps proportional to NT this results in a total average time
complexity of the algorithm as O(NT (logNT + Ũ log Ũ)) where Ũ is the average number of unique
abscissas. The total space complexity of the algorithm is linear, i.e. remains proportional to the
number of observations.

C.4 Divide operation

For simplicity and adequacy, we use the same partition division routine as in [17], which we refer to
for further details. It entails a sequential dimension-wise division into three sub-partitions with equal
side-length for each divided dimension. The set of dimensions to divide is the set of dimensions of
maximum length for the partition. The divide order of the dimensions is determined by the direction
of the highest observed function value.
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Figure 10: Time-series forecasting using Gaussian Processes with the Spectral Mixture [10] kernel.
The data is shown in black, ground truth in green and posterior GP samples in blue. Shown in the top
is slice sampling, followed by PTMCMC, DNS and lastly DEFER in the bottom.

D Experiments

D.1 Setup and baselines

We used the following implementations: DNS [13], slice sampling [14], and PTMCMC [12].

Slice sampling We use an initial step size corresponding to 0.05 of the domain sides, with
max_doublings set to 5. The used burn-in ratio is 25%.

PTMCMC We follow the default settings and sample p0 uniformly within the domain and set the
initial covariance matrix to be diagonal with variance 0.01. We use covUpdate=500, 25% burn-in and
all parameters set to the default.

DNS We use the default (as all other settings) of nlive_init=500, in practice nlive_init=min(500, 2
+ int(NT / 10)) as the max number of function evaluations NT in a few experiments is small. For
’Posterior mode’ pfrac = 1.0, and for ’Evidence mode’ pfrac = 0.0.

D.2 Runtime performance

The DNS and DEFER were run (single-threaded) on an Intel Core i7, and PTMCMC used multiple
cores due to its implementation. In Figure 8 we note both that DEFER has a similar algorithmic
cost to the other methods and that the DEFER has a near constant cost per function evaluation with
respect to NT . We also illustrate the common situation where the function evaluation time dominates
the decision time, making sample-efficiency the critical concern for total efficiency.

D.3 Time-series prediction example

As discussed in the experiments section of the paper, the Spectral Mixture kernel is known to be
challenging to optimize. This we suggest has much to do with the density surface of the model
induced by the parameters of the kernel. In Figure 9, we show the heavy multi-modality present in
the landscape. Such structures may cause local optimizers and step-wise sampling techniques like
MCMC to get stuck in poor solutions.

In Figure 10 the predictions for respective method are shown.

D.4 All quantitative comparison plots

In Figure 11 and Figure 12 some additional density function experiments are included. Uniform
partitioning is included for reference as well.
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Figure 11: Student’s t-distribution in various dimensionalities. Upper row: Median absolute error
of logZ. Lower row: Median absolute error of the entropy H(θ). For both metrics, shaded areas
are 95 % CI of the median.
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Figure 12: Upper row: Median absolute error of logZ. Lower row: Median absolute error of the
entropy H(θ). For both metrics, shaded areas are 95 % CI of the median. For legend see Fig 11.
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Figure 13: PTMCMC after 2M density function evaluations.

Figure 14: DNS after 2M density function evaluations.
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Figure 15: DEFER after 2M density function evaluations.

D.4.1 Gravitional-wave physics problem

Injected parameter 4D example. This 4D example was turned into a 6D example with the injection of
all parameters except the following six parameters:

• The luminosity distance to the source dL.
• Phase: The orbital phase of the binary at the reference time.
• Theta JN: The inclination of the system’s total angular momentum with respect to the line

of sight.
• Psi: The polarisation angle describes the orientation of the projection of the binary’s orbital

momentum vector onto the plane on the sky.
• Dimensionless spin magnitude a1.
• Dimensionless spin magnitude a2.

For more details, see [41]. To produce a deterministic surface (by fixing the global seed used by
the waveform approximant) while not fixing the seed for the third-party stochastic methods, we
maintain the pseudo-random generator used within and outside the function, e.g. "inside_state =
np.random.get_state(); np.random.set_state(outside_state)".

For corner plots, see Figure 13 to 15.

D.4.2 Spectral Mixture kernel problem code

PyTorch Spectral Mixture kernel GP example. This example was adapted for the Airline Passengers
dataset used in [10].

D.5 Code

An Python implementation of the algorithm will be made available as part of an open-source library.
The code for the density functions are found in Figure 16 to 20.
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from scipy.stats import multivariate_normal
import tensorflow_probability as tfp
import tensorflow as tf
tfd = tfp.distributions

def load_students_t(ndims, loc):
# loc is uniformly sampled each run within the unit space
assert len(loc) == ndims
D = ndims
theta_space = unit_space(ndims=D, dtype=np.float64)
assert is_point_within(space=theta_space, loc)

df = 2.5 + (D / 2)
scale = 0.01 * np.ones([D])

dist = tfd.StudentT(
df=df,
loc=loc,
scale=scale

)

@tf.function(
input_signature=(tf.TensorSpec(shape=D, dtype=np.float64))
)
def tf_f(x):

dist_inside = tfd.StudentT(
df=df,
loc=loc,
scale=scale

)
return tf.reduce_sum(dist_inside.log_prob(x))

def log_density_func(x):
return tf_f(x).numpy()

return log_density_func

Figure 16: Student’s t density function code

def canoe(x, D):
mean = 0.5 * np.ones([D])
inner_c = .95
inner_cov =
inner_c * np.ones([D, D]) + \

(1 - inner_c) * np.eye(D)
inner_cov *= 0.01

outer_c = .6
outer_cov =
outer_c * np.ones([D, D]) + \

(1 - outer_c) * np.eye(D)
outer_cov *= 0.02

# Base
base = 1

# Bump
log_outer = multivariate_normal.logpdf(

x,
mean=mean,
cov=outer_cov

)
outer = np.exp(np.float128(log_outer))

# Dip
log_inner = multivariate_normal.logpdf(

x,
mean=mean,
cov = inner_cov

)
inner = np.exp(np.float128(log_inner))

a = 20
b = 5
v_unconstrained = \

2 * base - a * outer + b * inner
v = np.maximum(v_unconstrained, 0)
return np.float64(np.log(v))

Figure 17: Canoe density function code

19



def mixture_of_gaussians(x):

width_a = 0.010
width_b = 0.015

def base_covariance(width):
covar = np.diag([(1.5 * width) ** 2] * D)
covar[0, 1] = - (1 * width) ** 2
covar[1, 0] = - (1 * width) ** 2
return covar

covar_a = base_covariance(width_a)
covar_b = base_covariance(width_b)

correlation_width = np.minimum(
width_a, width_b

)

covar_b[0, 2] = + correlation_width ** 2
covar_b[2, 0] = + correlation_width ** 2

covar_b[0, 3] = - correlation_width ** 2
covar_b[3, 0] = - correlation_width ** 2

a_log = multivariate_normal.logpdf(
x,
mean=[ # Pre-sampled uniformly

0.63263116, 0.74013062,
0.72316873, 0.24708191

],
cov=covar_a

)
b_log = multivariate_normal.logpdf(

x,
mean=[ # Pre-sampled uniformly

0.51387785, 0.46667482,
0.37765008, 0.79952093

],
cov=covar_b

)
a = np.exp(np.float128(a_log))
b = np.exp(np.float128(b_log))
v = np.log(2.5 * a + b)
return v.astype(np.float64)

Figure 18: Mixture of Gaussians density function code

def cigar(x, D):
mean = 0.5 * np.ones([D])
c = 0.99
cov = c * np.ones([D, D]) + (1 - c) * np.eye(D)
cov *= 0.01
return multivariate_normal.logpdf(

x,
mean=mean,
cov=cov

)

Figure 19: Cigar density function code
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def load_bananas(ndims):
assert 2 <= ndims <= 30

# Pre-sampled uniformly
available_means = np.array(
[ 1.82894125, 3.65177327, -1.43438539, -3.26737271, 0.11502106,
1.11453084, -1.30059343, 3.13096048, 1.68656209, 0.51719625,
-0.21618269, 0.73703613, -2.26608059, 0.59231536, -3.04444646,
-1.29475342, -0.70038633, -0.20978783, -1.45007999, 2.99177333,
-3.3860525 , -1.45444106, 1.50009961, 2.02561428, -3.7998913 ,
-0.29527712, -2.36989081, -1.34796447, 1.69551565, 2.1853957 ])

def _forward(x):
y_0 = x[..., 0:1]
y_1 = x[..., 1:2] - y_0 ** 2 - 1
y_tail = x[..., 2:-1]
return tf.concat([y_0, y_1, y_tail], axis=-1)

def _inverse(y):
x_0 = y[..., 0:1]
x_1 = y[..., 1:2] + x_0 ** 2 + 1
x_tail = y[..., 2:-1]
return tf.concat([x_0, x_1, x_tail], axis=-1)

def _inverse_log_det_jacobian(y):
return tf.zeros(shape=())

theta_space = space_from_sequence(
[(-5, 5)] * ndims,
dtype=np.float64

)

dtype = tf.float64

@tf.function(
input_signature=(

tf.TensorSpec(shape=[2], dtype=dtype),
tf.TensorSpec(shape=[2], dtype=dtype),

)
)
def tf_f_split(x_a, x_b):

Sigma_a = np.float32(np.eye(N=2)) + 0.3 * np.eye(N=2)[::-1]
Sigma_b = np.float32(np.eye(N=2)) + 0.95 * np.eye(N=2)[::-1]
p_x_a = tfp.distributions.MultivariateNormalTriL(

scale_tril=tf.linalg.cholesky(Sigma_a)
)
p_x_b = tfp.distributions.MultivariateNormalTriL(

scale_tril=tf.linalg.cholesky(Sigma_b)
)
banana = tfp.bijectors.Inline(

forward_fn=_forward,
inverse_fn=_inverse,
inverse_log_det_jacobian_fn=
_inverse_log_det_jacobian,
inverse_min_event_ndims=1,
is_constant_jacobian=True,

)
p_y_a = tfd.TransformedDistribution(

distribution=p_x_a, bijector=banana)
p_y_b = tfd.TransformedDistribution(

distribution=p_x_b, bijector=banana)
return p_y_a.prob(x_a) + p_y_b.prob(x_b)

def tf_f(x):
x_a = (x + tf.constant([-2, 1], dtype=dtype)) * \

tf.constant([1, -1], dtype=dtype)
x_b = (x + tf.constant([2, -2], dtype=dtype)) * \

tf.constant([1, 1], dtype=dtype)
return tf.math.log(tf_f_split(x_a, x_b))

has_extra_dims = ndims > 2

if has_extra_dims:
extra_indices = np.arange(2, ndims)
extra_means = available_means[:len(extra_indices)]

def log_density_func(x):
indices = [0, 1]
bananas_log_f = tf_f(x[indices]).numpy()

log_f = bananas_log_f
if has_extra_dims:

gaussian_log_f = multivariate_normal.logpdf(
x[extra_indices],
mean=extra_means,
cov=0.01 * np.eye(len(extra_indices))
)
log_f += gaussian_log_f

return log_f

return log_density_func

Figure 20: Bananas density function code
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