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1. Sample and covariance videos

To demonstrate the variability we capture in our predicted covariance matrix, we provide videos containing the
8 samples from the ensembles (on repeat) and 100 samples from our approach. As can be seen, we capture similar
modes of variability, but with the added benefit of being able to generate more samples.

To enable detailed illustration of the covariance between pixels, we provide videos showing the covariance between
highlighted pixels, and all other pixels in the image. These videos allow for a broader view of the patterns of correlation
that are learned by our model.

2. Network Architecture
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Figure 1. Network architecture

Ilustrations of our network architecture are provided in figures|[T} [2]and 3]

As shown in Fig. [3| our SUPN block predicts not only the diagonal and off-diagonal maps, but also scaling factors
for those. While the scaling factors for the diagonal terms are image dependent, the scaling factors for off-diagonal
elements are shared between all images.

Diagonal scaling The final diagonal value is given by: exp(D) x exp(a) + exp(b), where D is the log-diagonal
output of the network and a and b are the diagonal multipliers.
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Figure 2. Detail view of Res block and UpConv block
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Figure 3. Detail view of SUPN block

Off-diagonal scaling The final value for the off-diagonals is given by: M x ¢, where M is the output of the network
after the non-linearity tanh and c takes a different value for each of the off-diagonal maps corresponding to a different
neighbour.

3. Ablation Experiments

The following tables extend those in the main submission by removing aspects of the model architecture, or testing
model variants. All SUPN variants were trained using the Monodepth2 Boot+Log ensembles from [4]], except SUPN
Boot+self. The various SUPN variants are given in Table[T}

Accuracy measures for different variants and baselines are given in Table [2]and uncertainty measures are given in
Table 3] Key observation include:

* Removing the off-diagonal scaling mechanism described above leads to better log-likelihoods, but substantially
worse samples and uncertainty metrics. We believe this is because our formulation provides an initial bias to-
wards preferring smaller off-diagonal values, although the magnitude of these can grow this has to be sufficiently
supported by an increase in likelihood.

» Using a 3 x 3 neighbourhood for the Cholesky of the precision matrix prediction leads to a small reduction in
performance.

* The use of the additional diagonal scaling branch and concatenated pixel maps lead to reasonably small im-
provements in mean accuracy and uncertainty metrics, and a reduction in std-deviation for some metrics.



Table 1. SUPN variants for ablation study

Model suffix  Difference

3x3 Uses a 3 x 3 pixel neighbourhood rather than 5 x 5
- ODS No off-diagonal scaling function

-PM No concatenated pixel coordinate map

-DS No extra diagonal scaling branch
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4. Sparsity pattern of the Cholesky decomposition

We include an illustration of the sparsity pattern of the Cholesky decomposition explained in section 2.2 of the
paper.

Neighborhood in
image domain

Cholesky sparsity pattern Precision sparsity pattern

Figure 4. Sparsity pattern for the Cholesky decomposition. (Left) A 3 x 3 neighborhood around a central pixel in blue. Only
neighbours in pink are considered in the Cholesky matrix, which ensures that the matrix is sparse and lower triangular. (Center) The
sparsity pattern of the Cholesky matrix La; only colored pixels have non-zero values. Elements in blue correspond to (positive)
diagonal terms, while the elements in pink, correspond to off-diagonal values. (Right) The corresponding sparsity pattern of the
precision matrix A, where A = LoLJ.

5. Training details

We use the Adam optimiser with an initial learning rate of le—*, which we halve after the first, fifth and 15th
epoch. We train for 20 epochs in total. A batch size of 16 images was used for all experiments. Our initial encoder
and (mean) decoder are pre-trained models from the ensemble, we do not use samples from that model as observations
during the training process.

6. Pixelwise summaries
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Figure 5. Visualisation of standard deviations (2nd row) and disparity samples (3rd row and below) for a given image (top row).
Both of the standard deviations, and all of the samples are normalised to be in the same range. All of the samples are spatially
smooth and we note that our predicted standard deviations show similar structure, although the map is smoother than that derived
from the ensemble. We also observe substantially more uncertainty about the sky pixels with our approach. We speculate this is due
to the inherent uncertainty in the monocular depth prediction task, which induces large variability between the ensemble models
across images that the SUPN model has tried to faithfully capture.



7. Dataset and code

KITTI dataset [1] Available fromhttp://www.cvlibs.net/datasets/kitti/. Available for non-commercial
use only. License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Monodepth?2 repository [2] Available from https://github.com/nianticlabs/monodepth2. Avail-
able for non-commercial use only. License: https://github.com/nianticlabs/monodepth2/
blob/master/LICENSE

Poggi et al repository [4] Available from: https://github.com/mattpoggi/mono-uncertainty. Li-
cense: MIT License

Pytorch Available from: https://pytorch.org/|License: https://github.com/pytorch/pytorch/
blob/master/LICENSE

SuiteSparse Available from: https://github.com/DrTimothyAldenDavis/SuiteSparsel License:
LGPL-2.1

torch-sparse-solve 0.0.5 Available from: https://pypi.org/project/torch-sparse-solve/ License:
LGPL-2.1
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