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Abstract. We derive an algorithm for compression of the currents and varifolds representations of shapes, using
the Nystrom approximation in Reproducing Kernel Hilbert Spaces. Our method is faster than existing
compression techniques, and comes with theoretical guarantees on the rate of convergence of the
compressed approximation, as a function of the smoothness of the associated shape representation.
The obtained compression are shown to be useful for down-line tasks such as nonlinear shape
registration in the Large Deformation Metric Mapping (LDDMM) framework, even for very high
compression ratios. The performance of our- algorithm is demonstrated on large-scale shape data
from modern geometry processing datasets, and is shown to be fast and scalable with rapid error
decay.
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1. Introduction. Comparing and computing distances between geometric structures is a
fundamental task in computer vision and geometric learning applications. Most commonly,
such problems arise when building models of shape variation in a given application domain,
for example, in computational anatomy where shapes are most commonly available as discrete
curves and surfaces. When building such models, one requires a metric on shapes in order to
best tune the parameters of the model to match observed variation in the data. Ideally, the
available shape data for the given task is in parametric correspondence making the comparison
trivial. However, in realistic shape learning tasks this is far from the case with shape data
acquired by completely different methods, with inconsistent parametrizations and differing
resolutions across a dataset.

In the case where shape data is available as sub-manifolds of Rd, one can deal with
the lack of parametric correspondences in a more principled manner, using techniques from
geometric measure theory [9]. In particular, using the so-called currents [19], varifolds [10]
and normal cycles [18] representation of shapes. These representations view shapes as objects
that integrate differential forms on the underlying domain. In dimensions d = 2, 3 by choosing
these differential forms to lie in a Hilbert space, these representations essentially embed the
shapes into a dual space of differential forms. Using the dual metric on these representations
allows one to compute the distance between shapes, in terms of their action of vector fields
and not in terms of their parametrizations. The computation of the dual metric between
submanifolds can be written down explicitly when the Hilbert space is a Reproducing Kernel
Hilbert space, induced by a choice of positive definite kernel function k : X ×X −→ R. One
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can also perform the same technique for discrete shape data in a way that is consistent as
the resolution of the data tends to infinity. This framework has been used extensively in the
LDDMM literature [9], for matching shapes with diffeomorphisms, using the functional shape
metrics as the discrepancy term for matching.

However, while the aforementioned shape metrics account for the lack of parametric
correspondence when comparing shapes, the practical computation of these metrics can be
costly. For example, if one computes the currents metric between two triangulated surfaces
with M and N triangles respectively, the metric computation has complexity O(MN). In
modern geometry processing applications when M and N can exceed 104, this becomes far too
expensive both memory and computation wise. A similiar issue holds for both the varifolds
and normal cycles representations.

In order to deal with the cost of comparing shapes as geometric measures, there are many
methods to approximately compute the metric. Approximate methods include fast multipole
methods, gridding and grid based FFT methods, which are reviewed in [9]. However, these
methods only approximate the metric computation itself, and do not provide approximants for
the gradients of the metric, which are required for many shape registration algorithms using
currents and varifolds. Furthermore, they are often restricted to smooth scalar radial kernels
such as the Gaussian RBF kernel.

A recent development to allow large-scale exact metric computation (and therefore exact
gradients), is using efficient GPU tiling schemes with CUDA and C++ as in the KeOps
library [8]. This method allow scalable and fast metric computation up to a limit, typically
105 landmarks. Past this size the KeOps based method can become slow, especially for
shape matching and groupwise registration due to repeated metric and gradient of metric
computations.

1.1. Contribution. The main contribution of this work is a fast algorithm for compressing
massively over-sampled currents/varifolds associated to shapes, using the Nystrom approxima-
tion and Reproducing Kernel Hilbert Space (RKHS) theory. The proposed algorithm is much
faster than existing compression techniques, showing 10-100 times speed-ups in real-world
experiments. We compress target currents and varifolds of effective complexity N,M ≥ 105, by
forming sparse approximations of effective size n and m such that n≪ N , m≪M . Given two
shapes of resolution M , N , post compression one can compute exact distances and gradients
of distances between compressed shapes at cost O(mn), which gives significant savings when
m≪M , n≪ N . This can help massively speed up subsequent geometric learning algorithms,
as well reduce memory issues with metric computations.

Though the algorithm introduces an approximation error, we provide theoretical guarantees
on the error that allows us to make estimates of the desired sparsity of compression. Indeed, our
main result Theorem 5.1 and Corollary 5.2 together, implies an error decay at an exponential
rate in the Gaussian kernel setting

∥µ− µ̂∥2W ∗ ≤ C

∞∑
i=m+1

λi = O(m exp(−αm
1
d )),

for some α > 0 and where µ̂ is an approximation of ‘size’ m to the original current/varifold µ
in the dual of RKHS W . Such estimates hold both in expectation and high probability with
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respect to random noisy samples of the original underlying shape.

1.2. Outline. In section 2, we discuss the existing approaches to compression of measure-
based shape representations, and compare to our work. Subsequently, we review the currents
and varifolds representation of shape in section 3. We introduce the Nystrom approximation
and its RKHS variant in section 4, as well as existing bounds on the error of this approximation.
In section 5, we present the proposed compression algorithm, theoretical guarantees and its
application to compression of currents and varifolds, as well as LDDMM matching. In section 6
we present proofs of the main results. Finally, we demonstrate the strengths and weaknesses
of the proposed compression algorithm against existing work in section 7, on large-scale shape
data from modern geometry processing datasets. Finally, we discuss future work and possible
extensions in section 8.

2. Related Work.

2.1. Compression of currents and varifolds. The most closely related methods to this
work are compression algorithms developed separately for currents and varifolds. In such
methods, one builds a sparse greedy approximation to a given current/varifold based on a
finite dictionary. To the best of our knowledge, there are three works [14, 12, 16] focusing on
compression of measure-based representations of shapes. The first work [14] only applies to the
case of compression of curve measures, which makes it restricted to specific applications with
curve data such as sulcal lines and 2D curve data. Therefore, our work is best compared against
the more general works of [12] and [16] which apply to compressing general submanifolds.

The work of [12] is the first work to consider compression of measure-based representation
of shapes. In particular, the compression of large-scale currents. This algorithm is an iterative
greedy approach to approximating a target current. At each step, one adds a Dirac delta
measure that is most correlated with the current residual measure, which is updated after
each step. This algorithm guarantees decrease of the approximation error, and comes with an
exponential convergence rate to the target current. However in practice, the computation of
the residual and maximization step tends to be very expensive when running this algorithm
on large-scale currents. One can form approximation to this using grid-based projections
and the Fast Fourier Transform. However, the iterative nature of the algorithm and the
per-iteration cost means it can be very slow to compress a given large-scale current with ∼ 105

landmarks. As a result, such an algorithm is not suitable when one is interested in computing
compressions of multiple currents, or if one wishes to perform the compression routinely as
part of an algorithm for shape analysis, in reasonable time scales. Furthermore, the grid-based
nature of the algorithm that makes it well suited for currents is a drawback if one wishes to
compress varifolds, as the cardinality of the grid representation explodes with the inclusion of
the tangential component of varifolds.

The work of [16] applies to compression of varifold measures. This works by fixing a
compression level m, and minimizing the discrepancy between the target varifold, and a
discrete varifold of size m, using non-convex optimization techniques applied to the error in the
varifolds metric. However, the optimization itself requires repeatedly computing the varifolds
distance to the target measure, which is expensive. Furthermore, the non-convex nature of the
associated minimization problem means there is no guarantee that one finds a good solution
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without a careful initialization. This method also does not give any theoretical guarantees on
the quality of approximation, which is undesirable.

In comparison to these existing works our method, based on the Nystrom approximation,
can be used to compress both currents and varifolds in the same framework. Furthermore,
our algorithm is not an iterative greedy approach, meaning we can compress measures in
a fraction of the time of the existing methods, while still retaining strong approximation
guarantees, via the theoretical bounds afforded to us by the Nystrom approximation. Finally,
one is not required to compute the entire target measure in our method, as opposed to the
previous existing works. Due to this property, our method scales well to currents and varifolds
with > 105 landmarks without significant loss of speed and maintaining good approximation
guarantees.

2.2. Kernel quadrature and interpolation. We also remark here on the connection to
kernel compression methods that have been developed separately, in the context of large-scale
kernel learning methods. In particular, the works of [2, 4, 5, 15]. These works all focus on
the problem of constructing numerical quadrature rules for integration against probability
measures. Such constructions yield discrete probability measures µ̂ ∈W ∗ in the dual space of
an RKHS W that best approximate a given target probability measure µ ∈ P(X ), in the dual
norm on W ∗.

The main technique we use for compression of the measure-based shape representations is an
orthogonal projection onto a subspace generated by a randomized data-dependent distribution.
In our case, the data-dependent distribution is defined by approximated leverage scores. In
particular, we bound the compression error in terms of the interpolation error between two
associated dual functions in the RKHS.

The idea of interpolation/quadrature approximation of RKHS functions via orthogonal
projection onto randomized sub-spaces has been explored in [4] and [5], where the quadrature
nodes (or control points as in this paper) are chosen via a repulsive point distribution. In [4],
this distribution is a projection Determinental Point Process (DPP), and in [5], this distribution
is a continuous volume-sampling distribution, which is shown to be a mixture of projection
DPPs.

However, these approximation schemes require access to an eigen-decomposition of the
kernel of the RKHS, or in the discrete case an eigen-decomposition of the full kernel matrix.
One proposed way to overcome this is via MCMC methods for DPP in [5], which eliminates
the need for eigen-decomposition, but is still very slow for large-scale problems.

While we obtain similiar interpolation bounds in the specific case of discrete currents and
varifolds, we do so in a way that does not depend on using the DPP distribution. Instead, we
derive a bound in terms of trace error of the Nystrom approximation by leveraging connections
to sparse interpolation results of [20]. From here, we are free to apply any theoretically sound
sampling technique for the Nystrom approximation, such as Ridge Leverage Score (RLS)
sampling, DPP, Greedy initialisation etc. This step allows us to use the latest developments in
RLS sampling such as [11], [17] in order to form fast low dimensional approximations, that are
orders of magnitude faster than K-DPP sampling, while still retaining comparable theoretical
bounds.

The recent work of [15] on kernel quadrature does not have the same restrictions as [4],[5],
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and has competitive run-times for compression of probability measures, with similiar error
bounds. Furthermore, this method shows promise for large-scale compression, as evidenced
by numerical examples on empirical measures on machine-learning datasets. However, this
work applies to the case of probability measures and not to general linear functionals on an
RKHS. Therefore, in the case of currents and normal-cycles, which yield non-positive linear
functionals on vector-valued functions, this method is not directly applicable. However, it
may be interesting to compare the performance of our method against that of [15] for varifold
compression, as a varifold can straightforwardly be written as a probability measure, provided
the kernel is sufficiently fast-decaying e.g. Gaussian kernel.

3. Currents and Varifolds. We now briefly review the currents and varifolds representation
of shape, and their applications in computational geometry. In particular their application to
computing a metric distance between shapes. We present the case for smooth surfaces S ⊂ Rd,
with d = 3, but the analogous statements hold for smooth curves C with d = 2.

3.1. Currents. Given a smooth surface S ⊂ Rd, one can define a continuous linear
functional µS on continuous bounded vector fields v ∈ C0(Rd,Rd) as

µS(v) :=

∫
S
⟨v(x), n(x)⟩dS(x),(3.1)

where n(x) denotes the outward unit normal at x ∈ S, and dS(x) denotes surface measure. The
action (3.1) is simply the surface integral of v along S. This functional µS is the current [19]
associated to the curve S. Introducing a test Reproducing Kernel Hilbert Space of continuous
bounded vector fields V with matrix-valued kernel k : Rd × Rd −→ Rd×d, one embeds µS into
the dual space V ∗ due to the embedding V ↪→ C0(Rd,Rd) . A natural choice of norm on the
dual space V ∗ is the dual norm

∥µS∥V ∗ = sup
v∈V
∥v∥≤1

|µ(v)|.

Using the reproducing property of the kernel k on V , one can prove [19] that

∥µS∥2V ∗ =

∫
S

∫
S
k(x, y)⟨n(x), n(y)⟩dS(x)dS(y).

The dual norm induces the dual metric, which is simply the metric induced by the norm.
Given two elements µ, κ ∈ V ∗, one can compute the dual metric as

dV ∗(µ, κ) = ∥µ− κ∥V ∗ = sup
v∈V
∥v∥≤1

|µ(v)− κ(v)|.

Given two smooth surfaces S1, S2 ⊂ Rd, one can therefore compute distances between the
shapes in the dual metric

d(S1, S2) := dV ∗(µS1 , µS2) = ∥µS1 − µS2∥V ∗ = sup
v∈V
∥v∥≤1

|µS1(v)− µS2(v)|.
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Intuitively, this distance measures how differently the shapes integrate the same vector fields
v ∈ V along their surface, ranging over the whole space V . Therefore, the global geometry of
the shapes is distinguished by test vector fields that ‘probe’ the shapes via the surface integral.
Of course, the regularity and frequency of the vector fields in V determines the characteristic
scale at which shapes are distinguished in such metrics. For surfaces, the dual metric has the
form

∥µS1 − µS2∥
2
V ∗ = ∥µS1∥

2
V ∗ − 2⟨µS1 , µS2⟩V ∗ + ∥µS2∥

2
V ∗ ,

which can be computed using the explicit formulae

⟨µS1 , µS2⟩V ∗ :=

∫
S1

∫
S2

k(x, y)⟨n1(x), n2(y)⟩dS1(x)dS2(y), ∥µS1∥
2
V ∗ = ⟨µS1 , µS1⟩V ∗ ,

where the former term can be interpreted as an inner product, see [9]. Notice that computation
of this metric between S1 and S2 does not require any correspondence information, only
access to the surfaces and normals. This makes the currents representation ideal for metric
comparison of shape, as it does not require any further learning to extract dense parametric
correspondences, and gives explicit formulae for the metric that gives a measure of the difference
in global geometry.

Of course in practice, one only has access to a discretization of the smooth surfaces of interest
S1, S2 ⊂ Rd. Most commonly, surfaces may be available as a triangulation Ŝ1 = {T 1

i }Ni=1,
Ŝ2 = {T 2

i }Mi=1. In order to make geometric comparisons between the discretized shapes, we can
once again embed the observed data into the dual space V ∗ to obtain discrete sum of Dirac
functionals

Ŝ1 ↪→ µ̂S1 =

N∑
i=1

δc1i
ν1i ∈ V ∗, Ŝ2 ↪→ µ̂S2 =

N∑
j=1

δc2j
ν2j ∈ V ∗,

where c1i , ν
1
i ∈ Rd denotes the centre and unnormalized normal vector respectively of the i’th

triangle Ti of Ŝ1. Both the centres and normals can be computed from the vertices and edges
of the discrete triangles using averages and cross products. Each weighted Dirac functional
δab ∈ V ∗ in the above, has the action (δab|v) = bT v(a) for all v ∈ V . This gives a simple action
for the discrete functionals. For example for Ŝ1,

µ̂S1(v) =

N∑
i=1

(ν1i )
T v(c1i ).

It is possible to show the discrete representation is consistent with the continuous case [9]
in the sense that ∥µ̂S1 − µS1∥V ∗ ≤ Cτ(N) such that τ(N)→ 0 as N →∞. Therefore, for a
sufficiently fine discretization, we do not lose much geometric information by working with µ̂S1 .

Once again, we can compute the dual metric between µ̂S1 , µ̂S2 in order to make geometric
comparisons without correspondences. Furthermore in the discrete case, using the reproducing
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property of the RKHS, one can show [19] the dual metric has a very simple expression that
can be computed exactly, using kernel evaluations and normal vector inner products:

dV ∗(µ̂S1 , µ̂S2)
2 =

N∑
i,j=1

k(c1i , c
1
j )⟨ν1i , ν1j ⟩ − 2

N∑
i=1

M∑
j=1

k(c1i , c
2
j )⟨ν1i , ν2j ⟩+

M∑
i,j=1

k(c2i , c
2
j )⟨ν2i , ν2j ⟩.

(3.2)

This is easy to implement, and to compute gradients of for down-line tasks such as shape
registration using the currents metric as a discrepancy term.

Remark 3.1. Note that the presentation of this section can easily be extended to continuous
and discrete curve data in Rd for d ∈ {2, 3} as well. This is done by replacing the surface
integrals with line integrals, and formulating the analogous discrete formulation with discrete
tangent vectors and segment centres. See [13] for the specifics.

However, in modern geometry processing tasks where discretized shapes Ŝ1, Ŝ2 are available
with resolutions N,M ≥ 104, one has to be careful in the method used for computing the
discrete currents metric presented in equation 3.2. The computational and memory cost of the
discrete metrics scales as O(NM), which makes the naive implementation infeasible for the
large N,M regime, without specialised hardware, or complex tiling schemes such as Keops.

3.2. Varifolds. As currents rely on the orientation of the shapes to be compared (directions
of tangent vectors are important) and are linear as a function of the tangent vectors, the
current metric often struggles when comparing shapes with high-frequency localised variations,
such as spikes arising either from anatomical features or noise. In these cases such features
cancel out in the current metric and are not ‘seen’. One solution to this problem, is the
varifolds representation of a shape [10], which originates in geometric measure theory.

In the varifolds representation of shape [10], shapes are treated as linear functional on a
space of real-valued functions lying in a RKHS V of the form:

f : X −→ R, X = Rd × Sd−1,

induced by a real-valued kernel function K : X × X −→ R. Typically, this is a product kernel
over the two components of X , of the form

K((x, ν), (y, µ)) = Kp(x, y)Ks(ν, µ), (x, ν), (y, µ) ∈ X ,

that factorizes over spatial and spherical components, as Kp and Ks respectively. This allows
different regularity of functions, in both spatial and spherical components.

As in section 3.1, smooth surfaces S ⊂ Rd are embedded into the dual space V ∗ via surface
integral action

µS(v) =

∫
S
v(x, n(x))dS(x).

The functional µS is known as the varifold associated to S. Once again, given two smooth
surfaces S1, S2 ⊂ Rd to be compared, one can compute geometric distances between them in
the dual metric

d(S1, S2) := dV ∗(µS1 , µS2) = ∥µS1 − µS2∥V ∗ .
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A similiar intuition as section 3.1 holds, that metric comparison of shapes is made by comparing
how differently shapes integrate the same functions in the RKHS V along their surface. However,
one must note that the test functions now vary both in space and normal components. As we
shall see in the metric expression, this means the varifolds representation of shapes gives a
strictly richer representation of shape.

As in section 3.1, it is possible to show closed form expressions for the dual metric when
applied to varifolds associated to shapes. In particular,

∥µS1 − µS2∥
2
V ∗ = ∥µS1∥

2
V ∗ − 2⟨µS1 , µS2⟩V ∗ + ∥µS2∥

2
V ∗ ,

where the individual terms are explicitly computed as

⟨µS1 , µS2⟩V ∗ :=

∫
S1

∫
S2

Kp(x, y)Ks(n1(x), n2(y))dS1(x)dS2(y), ∥µS1∥
2
V ∗ = ⟨µS1 , µS1⟩.

In the case where the spherical kernel is linear, so that Ks(u, v) = ⟨u, v⟩, then the above
metric reduces to the currents metric between shapes. However, in general one can choose any
nonlinear valid kernel on the sphere, such as the Gaussian kernel. In this case, the expression
of the inner-product term makes clear why the varifolds representation is often preferred over
currents. In particular, the varifolds metric performs nonlinear kernel comparison of normal
vectors along the surface, whereas the currents metric is restricted to linear comparison. The
extra nonlinearity in the normal component means there are no cancellation effects for varifolds
as opposed to currents, and allows a richer metric comparison of shapes.

One can perform a simliar comparison for discrete shapes, using the same approach as in
section 3.1. Given triangulated shapes Ŝ1 = {T 1

i }Ni=1, Ŝ2 = {T 2
i }Mi=1, one defines the associated

discrete varifolds in V ∗ as

µŜ1
=

N∑
i=1

δ(c1i ,n1
i )

∥∥ν1i ∥∥, µŜ2
=

M∑
i=1

δ(c2i ,n2
i )

∥∥ν2i ∥∥,
where the notation for cki , ν

k
i are the same as section 3.1 and nk

i denotes unit normal vector
of triangle Ti. As for currents, the discrete representation is consistent with the continuous
representation [10], in the sense that ∥µ̂S1 − µS1∥V ∗ ≤ Cτ(N) such that τ(N)→ 0 as N →∞,
for smooth S.

Finally, the reproducing property of the RKHS kernel yields simple closed form formula
for the varifolds metric between two discrete shapes

dV ∗(µ̂S1 , µ̂S2)
2 =

N∑
i,j=1

Kp(c
1
i , c

1
j )Ks(n

1
i , n

1
j )
∥∥ν1i ∥∥∥∥ν1j ∥∥− 2

N∑
i=1

M∑
j=1

Kp(c
1
i , c

2
j )Ks(n

1
i , n

2
j )
∥∥ν1i ∥∥∥∥ν2j ∥∥

+

M∑
i,j=1

Kp(c
2
i , c

2
j )Ks(n

2
i , n

2
j )
∥∥ν2i ∥∥∥∥ν2j ∥∥.

The analogous statements of this section for varifolds associated with curves in Rd for
d ∈ {2, 3}, also hold, see [9]. Notice once more that in the large N,M regime, naive computation
of the varifold metric become infeasible both computationally and memory wise, and requires
specialised routines and GPU implementations such as in the Keops library.
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4. Nystrom Approximation in RKHS. We now discuss the main tool we use to derive a
compression algorithm; the Nystrom approximation.

Suppose we have a dataset {(x1, y1), . . . , (xn, yn)} ⊂ X × R on which we perform Kernel
Ridge Regression (KRR) with positive definite kernel k. Kernel Ridge Regression is the
following regularized minimization scheme over the RKHS Hk of real valued functions induced
by the kernel k:

f̂ = argmin
f∈Hk

n∑
i=1

(yi − f(xi))
2 + λ ∥f∥2Hk

.(4.1)

There exists a unique minimizer to this problem [20], and takes the form

f̂ =
n∑

i=1

αik(·, xi),

where the coefficient vector α = (α1, . . . , αn)
T ∈ Rn is given by

α = (KXX + λIn)
−1y, y = (y1, . . . , yn) ∈ Rn,

where (KXX)ij = k(xi, xj) is the kernel matrix evaluated on input points {xi}ni=1.
The Nystrom Kernel Ridge Regression [20] is a related problem that fits the data in

a restricted subspace of the RKHS, that is parametrized by a finite set of control points
c = {c1, . . . , cm} ⊂ X in the domain. Defining the subspace

M :=

{ m∑
j=1

αjk(·, cj) : αi ∈ R
}

= span{k(·, c1), . . . , k(·, cn)},

the Nystrom KRR problem is to find

f̄ = argmin
f∈M

n∑
i=1

(yi − f(xi))
2 + λ ∥f∥2Hk

.

Once again, there exists a unique solution to this problem of the form

f =

m∑
i=1

βik(·, ci),

where the coefficients β = (β1, . . . , βm)T ∈ Rm are given by

β = (KCXKXC + λKCC)
−1KCXy.

The following theorem of [20] provides a bound on the error between the full solution and the
m-dimensional Nystrom approximation to the KRR problem.

Theorem 4.1. Let k : X ×X −→ R≥0 be a kernel function with associated RKHS Hk. Let f̂ ,
f̄ be the KKR and Nystrom KRR solutions respectively, for data {(x1, y1), . . . , (xn, yn)} ⊂ X×R,
control points c = {c1, . . . , cm} and λ > 0 fixed. Then, the following bound holds∥∥∥f̂ − f̄

∥∥∥2
Hk

≤ 2tr(KXX −QXX) ∥y∥2

λ2
, QXX := KXCK

−1
CCKCX .

The matrix QXX in the previous theorem is the well-known Nystrom approximation [3] to the
kernel matrix KXX . We now review this method in the following section.
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4.0.1. Nystrom Approximation for Kernel Matrices. The Nystrom approximation method
can be applied to general positive-semidefinite matrices, but are most frequently used in forming
low-rank approximation to kernel matrices. Suppose that we are given n points x = {x1, . . . , xn}
in a domain X , and k : X × X −→ R is a positive semi-definite kernel function. Defining the
matrix (KXX)ij = (k(xi, xj)), how can we best approximate the kernel matrix KXX ∈ Rn×n

with a low-rank matrix? It is well known from finite-dimensional linear algebra, that the best
rank-k approximation to the kernel matrix is given by the SVD truncation, where optimality
is measured by error in Frobenius norm. However, the computation of such an approximation
requires computing an eigen-decomposition which scales as O(n3). For very large n as frequently
occurs in machine learning, this is an obstacle.

The Nystrom method for low-rank kernel matrix approximation uses a similar idea to
the Nystrom method for solving integral eigenproblems (for the associated kernel integral
operator). In the original Nystrom method [21], partial evaluations of the kernel at a fixed set
of control points c = {c1, . . . , cm} is used to solve a finite-dimensional eigenproblem. The full
eigenfunctions are approximated by extending the finite-dimensional solution in an appropriate
way.

Similarly, in the Nystrom approximation for kernel matrices, one evaluates the kernel at
a finite set of control points c = {c1, . . . , cm} drawn at random from x = {x1, . . . , xn}, and
forms a Nystrom approximation to the full matrix as,

KXX ≈ KXCK
−1
CCKCX =: QXX .

The matrix KCC , is the matrix of cross evaluations of the kernel on the set c. It is possible to
obtain an error bound for this approximation [3], for a suitable sampling distribution of the
control points. This is the content of the following theorem of [3].

Theorem 4.2. Suppose that m control points c = {c1, . . . , cm}, are drawn with probability
p(c) ∝ det(KCC) that is proportional to the determinant of the cross evaluation matrix. Then,
the following bound holds in expectation wtih respect to p(c):

Ec ∥KXX −QXX∥2 ≤ Ec[tr(KXX −QXX)] ≤ (m+ 1)
n∑

i=m+1

λi(KXX),

where λi(KXX) denotes the i’th largest eigenvalue of the full kernel matrix.

See [3] for a proof.
This theorem demonstrates that the rate of decay of the Nystrom matrix approximation

error, is at least as fast as the eigenvalue decay of the target matrix. In fact, for smooth
kernel functions - for example the Gaussian RBF kernel - the eigenvalues of such kernel
matrices are known to decay rapidly. Furthermore, one can make the influence of the kernel
frequency/regularity clear by averaging over different inputs. For example, [6] proves the
following theorem.

Theorem 4.3. Let p a probability density function over the domain X . Denote X =
{x1, . . . , xn} a size n i.i.d sample, from this distribution. Taking expectation over such draws
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from this distribution, gives the following bound:

Ex[Ec[tr(KXX −QXX)]] ≤ (m+ 1)Ex[
n∑

i=m+1

λi(KXX)] ≤ n(m+ 1)
∞∑

i=m+1

λm(4.2)

where the eigenvalues λi in the right-hand side sum, are the eigenvalues of the kernel
integral operator K : L2(X , pdx) −→ L2(X , pdx) defined as follows,

(Kg)(x′) =
∫
X
g(x)k(x, x′)p(x)dx,

where one defines

L2(X , pdx) :=
{
f : X −→ R :

∫
X
f(x)2p(x)dx < +∞

}
,

upto p almost everywhere equivalence.

Therefore, on average the quality of the Nystrom matrix approximation depends on the
smoothness properties and eigendecay of the kernel. For common kernels such as the Gaussian
RBF, one can analytically bound the eigendecay follows

∞∑
i=m+1

λm = O(m exp(−αm
1
d )),(4.3)

for some α > 0 that depends on the pair (k, p) as shown in [6].
The larger the lengthscale, the faster the eigendecay and therefore the better the approxi-

mation for small m. For kernels with smaller lengthscales and therefore slower eigendecay, a
higher m will be required to make the average error smaller.

While sampling from the m-DPP gives a convergence bound, sampling naively from this
distribution is computationally intractable for large n and moderate m. While there exists more
sophisticated algorithms for sampling exactly from such distributions, they require computing
an eigen-decomposition of the kernel matrix with cost O(n3) which is also computationally
infeasible. One way to overcome this issue while retaining the theoretical guarantees, is via
MCMC sampling to sample from a k-DPP. The sampling scheme is given in Appendix A.2.

4.1. Ridge Leverage Score (RLS) Sampling for Nystrom approximation. An alternate
method to ensure good quality of Nystrom approximation is Ridge Leverage Score (RLS)
sampling technique of control points. If one fixes a level of approximation λ, this technique
samples each point xi ∈ X = {x1, . . . , xn} with probability

li(λ)(K) = (K(K + λI)−1)i,i,

known as the ridge leverage score of point xi, and constructs the Nystrom approximation on
the sampled points c = {c1, . . . , cm}. It can be shown this procedure gives the error bound∥∥∥K − K̃

∥∥∥
2
≤ λ, K̃ = KXcK

−1
cc KcX ,
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with probability 1 − δ, for randomized sample size satisfying m = O(dλ log(dλ/δ)), where
dλ := tr(K(K + λI)−1). Note that we also have that the size m is randomized as a function of
λ the error. If one sets λ = 1

k

∑n
k+1 λi(K), it may be shown [17] that dλ = O(k), so that

∥∥∥K − K̃
∥∥∥
2
≤ 1

k

n∑
k+1

λi(K)(4.4)

with probability 1 − δ and randomized sample size m = O(k log(k/δ)). Alternatively, in
practice one may sample exactly m = ⌈(k log(k/δ))⌉ samples directly from the leverage score
distribution without replacement, so that the above bounds hold approximately. This is often
preferable in practice as the constants involved in the upper bound are large, and may result
in oversampling relative to a fixed approximation level.

Of course, computing directly the RLS scores {li}ni=1 is computationally infeasible due to
the prohibitively large kernel matrices and inverses involved. As a result, there are a wide
array of algorithms that have been developed in order to approximately sample from this
distribution while still maintaining the error bounds up to a factor. Such algorithms require
significantly less memory and computational cost, making them the sampling algorithm of
choice in practical situations for the Nystrom approximation. In this work, we consider two
such sampling methods; the recursive method of [17] and more recently the divide and conquer
method of [11].

For example, the sampling algorithm given as Theorem 3 of [17], gives the following
theoretical guarantee:

Theorem 4.4. Fix δ ∈ (0, 1
32), and S ∈ N. There exists a constant c > 0 such that the

Recursive RLS sampling algorithm of [17], with probability 1 − 3δ returns m ≤ cS log(S/δ)
such that ∥∥∥K − K̃

∥∥∥
2
≤ 1

S

n∑
i=S+1

λi(K).(4.5)

If one wants to construct an approximation with number of control points approximately m, it
suffices to choose S such that m ≈ S log(S/δ), which would give the error bound on the right
hand side with high probability. Sampling using this algorithm is significantly faster than
using MCMC samplers, and in practice gives good quality samples that ensure the Nystrom
approximation remains small with strong theoretical guarantee. In practice, one may sample
exactly m = ⌈(S log(S/δ))⌉ samples directly from the approximate leverage score distribution
without replacement, so that the above bounds hold approximately. This is implemented in 1

made available by the authors of [17]. Again, we note that the constants in the upper bound
of m are large, and in practice suffices to take m ≈ (S log(S/δ)).

Another efficient RLS sampler is the Divide and Conquer (DAC) RLS approximation, which
is algorithm 2 of [11]. This algorithm also yields the same bound (4.4) but with probability

1− δ and m ≤ c(S + n(1− α)) log(S+n(1−α)
δ ), where α ∈ (0, 1). The theory bound on m here

is looser than [17] with the additive factor of n(1−α). While the theoretical guarantees of [11]

1https://github.com/cnmusco/recursive-nystrom
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algorithm are not quite as tight as that of [17], one observes that sampling m ≈ S log(S/δ)
from the DAC leverage scores yields Nystrom approximations of similiar error to the method
of [17], while being significantly faster in practice, especially in the case of n ≥ 105. We also
observe this in practice in section 7. Furthermore, it is very easy to parallelise the DAC
algorithm, in contrast to the Recursive RLS scheme, thus gaining a further speedup. Therefore,
even though we prove bounds in section section 5 for the method of [17], the DAC method of
[11] is usually our algorithm of choice for sampling control points for compression of very large
currents and varifolds.

5. Main Results. We now propose a method to compress discrete linear functionals of the
form

µ =

n∑
i=1

δxiαi ∈ V ∗, (xi, αi) ∈ X × Rd,

where we take X to be a non-empty set, and assume a fixed RKHS V ⊂ C(X ,Rd) induced
by a scalar diagonal kernel K(x, y) = k(x, y)Id. This choice of scalar diagonal kernel is by
far the most popular in practical applications of currents and varifolds. In this section, we
derive a method for a general d ∈ N, and we shall apply this result to the special case of
currents and varifolds in subsequent sections. The main techniques we employ are the Nystrom
approximation and interpolation theory in RKHS, which allows us to obtain fast decaying
error bounds for the compression, while also giving a computationally cheaper approximation
method.

The compressed approximation to the full functional will take the form

µ̂ =

m∑
i=1

δciα
c
i , (ci, α

c
i ) ∈ X × Rd,(5.1)

for appropriately chosen ci, α
c
i and m≪ n such that the error is bounded above by a small

constant:

∥µS − µ̂S∥V ∗ < ϵ.(5.2)

Note that we wish to approximate in the discrete delta form (5.1), as it will allow us to use the
exact dual metric computation formula (3.2) on the compressed form, with m≪ n terms. This
reduces dual metric computation cost, from O(n2) to O(m2), which gives significant saving
when m≪ n.

Henceforth, we denote by L : V −→ V ∗ the isometric duality mapping of the RKHS V .
By the reproducing property of the kernel functions, it is a standard fact that the following
equality holds:

L−1(δcw) = k(·, c)w ∈ V, (c, w) ∈ X × Rd,(5.3)

which is the dual vector field in V to the linear functional δcw. Using the Riesz representation
theorem and the explicit form 5.3 of the isometric duality map in Reproducing Kernel Hilbert
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Spaces, the proposed approximation of discrete functionals is equivalent to approximating
functions in V of the form:

vα(x) :=

n∑
i=1

k(x, xi)αi = L−1(

n∑
i=1

δxiαi),

with compact approximations of the form,

vm(x) :=
m∑
i=1

k(x, ci)α
c
i = L−1(

m∑
i=1

δciα
c
i ),

with size m≪ n.

5.1. Algorithms and Theoretical guarantees. We summarise the resulting algorithm for
compressing discrete functionals in RKHS in the following.

Algorithm 5.1 Discrete functional compression

1: Fix X , m≪ n, RKHS kernel function k : X × X −→ R , a sampling algorithm for control
points and target functional

µ =
n∑

i=1

δxiαi, (xi, αi) ∈ X × Rd.

2: Sample m control points {c1, . . . , cm} ⊂ {x1, . . . , xn} from the chosen sampling algorithm
for control points.

3: Form the dual vector valued function on the control points as

yj =

n∑
i=1

k(cj , xi)αi, j = 1, . . . ,m.

4: Form the control point approximation via orthogonal projection

µ̂ =
m∑
i=1

δciβi, β = K−1
CCy ∈ Rm×d.

Depending on the algorithm used for sampling control points, this algorithm yields different
theoretical guarantees which we now describe.

Theorem 5.1. Suppose we have a discrete target functional of the form

µS =

n∑
i=1

δxiαi ∈ V ∗, (xi, αi) ∈ X × Rd

with associated dual vector-valued function

vα(x) =
n∑

i=1

k(x, xi)αi ∈ V.
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Sample m control points c = {c1, . . . , cm} ⊂ {x1, . . . , xn} and define the matrix of values

Yc = (vα(c1), . . . , v
α(cm))T ∈ Rm×d,

which is the evaluation of the dual vector-valued function on the control point locations.
Computing weights

β = [β1, . . . , βm]T = K−1
cc Yc ∈ Rm×d,

yields an approximation

m∑
i=1

δciβi ≈
n∑

i=1

δxiα̂i,

that satisfies ∥∥∥∥∥
n∑

i=1

δxiα̂i −
m∑
i=1

δciβi

∥∥∥∥∥
2

V ∗

≤ Ctr(KXX −QXX).

1. Sampling control points from an m-DPP on the kernel matrix KXX , yields the following
in-expectation error bounds

Ec

∥∥∥∥∥
n∑

i=1

δxiα̂i −
m∑
i=1

δciβi

∥∥∥∥∥
2

V ∗

≤ C(m+ 1)
n∑

i=m+1

λi(KXX).

2. By sampling control points using the Recursive RLS scheme instead, we obtain similiar
theoretical guarantees (upto a factor). Fixing δ ∈ (0, 1

32), S ∈ N, with probability 1− 3δ,
we have m ≤ cS log(S/δ) and∥∥∥∥∥

n∑
i=1

δxiα̂i −
m∑
i=1

δciβi

∥∥∥∥∥
2

V ∗

≤ Cn

S

n∑
i=S+1

λi(KXX).

We observe the randomized projection scheme yields a strong error-decay bound, at least as
fast as the rate of decay of eigenvalues of the kernel matrix. We also remark here that almost
identical bounds to those proven for the Recursive RLS scheme, also holds when sampling
control points with the DAC RLS sampler of [11], with slightly looser bounds on m.

We may also relate the decay of error to the decay of eigenvalues of the kernel integral
operator Kp itself, where p denotes a sampling distribution for the delta centres xi ∈ X . This
is summarised in the following corollary,

Corollary 5.2. Suppose that the Dirac delta centres {xi}ni=1 ∈ X of the target µ ∈W ∗ from
a continuous distribution with density p. Then, the rate of decay of the of the m-DPP and RLS
approximations in Theorem 5.1 are bounded in expectation and with high probability respectively
by,

f(m) =

∞∑
i=m+1

λi
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In the special case where the input distribution is a Gaussian mixture and RKHS kernel is
Gaussian on Rd, this yields the following exponential decay rate

f(m) = O(m exp(−αm
1
d )), α > 0,

where α is a distribution dependent constant.

The Gaussian mixture distribution for delta centres in Corollary 5.2, encompasses the case
where shape data is sampled noisily from a continuous distribution centred on an underlying
continuous shape. We now discuss the application of Algorithm 5.1 and Theorem 5.1 to
compression of the currents and varifolds representations of shape.

5.2. Application to Compression of Currents and Varifolds. Given a discretized shape
Ŝ1 ⊂ Rd, we know that one can construct discrete currents and varifolds of the form

µS =

n∑
i=1

δxiαi ∈ V ∗, (x, αi) ∈ X × Rd,

in order to perform down-line tasks requiring metric shape comparison, without correspondences.
As before, V ∗ is an RKHS induced by scalar diagonal kernel K(x, y) = k(x, y)Id, with
k : X ×X −→ R≥0. We can apply the approximation methods of the previous section, in order
to compress a given current or varifold in a sparse basis. It simply remains to explicit the
forms of the underlying space X , and the points and weights xi, αi for each representation.

1. For currents, we have that X = Rd and for i = 1, . . . , nT ,

xi :=
1

3
(vi1 + vi2 + vi3), αi :=

1

2
(vi3 − vi2)× (vi2 − vi1),

so xi, αi are the i’th triangle centre and (un-normalized) normal vector respectively.
2. For varifolds the base space is changed to X = Rd × Sd−1 and for i = 1, . . . , nT ,,

xi :=

(
1

3
(vi1 + vi2 + vi3),

νi
∥νi∥

)
, αi := ∥νi∥ , νi :=

1

2
(vi3 − vi2)× (vi2 − vi1)

where as before, xi, αi are the i’th triangle centre and (un-normalized) normal vector
respectively.

With these choices, applying the compression algorithm of the previous section, will allow us to
compress currents and varifolds within the same framework, while retaining strong theoretical
error bounds. Indeed, Theorem 5.1,Corollary 5.2 imply that for the common gaussian kernel
setting, one can obtain compression of currents and varifolds associated to noisy shape samples
with exponentially decaying compression error.

5.3. Choice of m. In the algorithms we have presented so far, the choice of the compression
level m is a crucial one. In theory, one can set the eigenvalue bounds presented in lemma
5.1, to a pre-defined tolerance and choose m accordingly. However, in practice the cost of
evaluating the upper bound is O(n3) due to the eigen-decomposition cost, which is undesirable.
Choice of m is also an issue that is unresolved in the works of [12] and [16], due to expensive
to compute upper bound, and lack of theoretical error guarantees respectively.
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As a cheaper practical alternative, we propose to use the preliminary trace bound of
corollary 6.2 instead for this task. In particular, one can use the trace error of the Nystrom
approximation as an indicator for the true compression error given m control points. For shift
invariant kernels, computation of the trace term simplifies as,

tr(KXX −QXX) = n− tr(KXCK
−1
CCKCX),

which has a computational cost of at most m3 + nm2, which is significantly less than n3 of the
eigen-decomposition.

After computing approximate leverage scores, one can choose m by setting a pre-defined
tolerance ϵ > 0 and increasing the number of samples m, until the change in the trace bound
is below this tolerance. This is a sensible choice, as we observe in practice (see section 7) that
the decay of the true compression error closely matches that of the trace bound, which makes
it a suitable proxy for the error. This is given as algorithm 5.2. Note that this procedure, is
similiar to the use of trace bound for judging quality of inducing points in sparse Gaussian
process methods [6].

Algorithm 5.2 Trace bound heuristic for choosing m

1: Fix error tolerance τ > 0, e := +∞ and m = 0.
2: while e > τ do
3: m← m+ 1
4: Sample m control points c = {c1, . . . , cm}.
5: Set e = n− tr(KXcK

−1
cc KcX)

6: end while

5.4. Application to LDDMM matching. Thus far, we have derived a fast compression
algorithm for large-scale currents and varifolds with theoretical guarantees on the quality of
the approximation error. We now describe how the compressed measures can be used for the
down-line task of nonlinear shape registration in the LDDMM framework, one of the areas in
which these metrics are most commonly used.

A typical workflow in the the application of LDDMM to computational anatomy is to register
two given shapes T, S ⊂ Rd via a minimal energy diffeomorphism φ. Such diffeomorphisms are
typically induced as the flow of time dependent vector fields v : [0, T ]×Ω −→ Rd such that for
each t, v(t, ·) ∈ V where V is an RKHS of vector fields. In particular, one registers T to S in
this framework, by minimizing an objective E : L2([0, T ], V ) −→ R≥0 of the form

E(v) =

∫ T

0
∥v∥2t dt+ λ ∥φv

0T · T − S∥2W ∗ , λ > 0,(5.4)

where φv
0T denotes the time T flow associated to v an W is the RKHS associated to the

current/varifold used for shape comparison. The objective is a sum of two terms, the first
term measuring the energy of the diffeomorphism induced by v, and the second a weighted
correspondence-less matching term encouraging good quality of the registration as measured in
∥·∥W ∗ . There are many efficient methods developed to optimize these objectives, using special
properties of the solutions such as momentum conservation. However, for large-scale shapes
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the discrepancy term is a challenge to compute and pass gradients through with cost scaling
as O(|T ||S|). As previously mentioned, the KeOps framework has been recently developed to
deal with such issues. However, this method starts to become slow once the resolution of T, S
exceeds 104 and requires a GPU with sufficient memory. This becomes especially noticeable in
the group-wise setting when many shapes {S1, . . . , Sn} are being registered to T as part of
learning a statistical model for shapes, and one is required to compute the metric multiple
times per-iteration.

We now describe how to use the compression to reduce the cost of registration drastically,
and scale up to extremely over-sampled shapes. Henceforth, we focus on the case of a single
registration. At each iteration of the optimization procedure for the objective (5.4), one is
required to compute the discrepancy term. Since S does not change from iteration to iteration,
one can compress µS as a form of pre-processing for the metric computation. There are two
options at this stage. The first, is to compute the compression of µφ(T ) each iteration and make
the metric comparison on the compressed measures. The second, is to compress the template
itself and compute a push-forward of the compressed template with which we compute the
metric against the compressed target. This push-forward acts naturally on geometric measures,
with the attractive property φ#(µT ) = µφ(T ). There are trade-offs in either case. In the former,
at each iteration we have to compute the leverage score approximation and the orthogonal
projection, both of which have a cost scaling as O(nm2). In the latter, one only has to compute
the compression once and only push forward m points on the template. However, computing
push-forward of a general µ ∈W ∗ requires computing the action of the Jacobian of φ, which
requires solving another set of ODEs in parallel, which can be very expensive depending on
the problem size.

Instead, we propose a more efficient variant that combines the best of both approaches.
First, one compresses the initial template measure µT to obtain µ̂T , supported on a set of
control points c ⊂ X . Next, instead of computing the measure push-forward φ#µT explicitly,
one can deform the full template T as in standard LDDMM, and subsequently perform the
orthogonal projection of µφ(T ) on to the subspace generated by φ(c(T )) the transported control
points at time T . This is a reasonable approximation to make in practice, as the push-forward
of discrete currents/varifolds are discrete currents/varifolds centred at the transported control
points, as shown in [12], [16] for currents and varifolds respectively. Note that in this variation,
one is only required to perform the RLS approximation once, in order to compress the initial
template. After this, each iteration only requires one additional orthogonal projection on the
deformed template. The proposed compressed matching algorithm is given below, with T = 1.
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Algorithm 5.3 Compressed LDDMM iteration

1: Fix ϵ > 0, r := +∞, template T , vector field vθ(t, x) and compressed target measure µ̂S .
2: Compress µT with RLS sampling, and control points c = {c1, . . . , cm}.
3: while r > ϵ do
4: Push forward template under current estimated diffeomorphism,

φθ := φvθ
01.

5: Project µφ(T ) onto subspace spanned by c(T ), to obtain Pc(µφθ(T )).
6: Compute compressed objective,

E(vθ) =

∫ 1

0
∥vθ(t, ·)∥2 dt+ λ

∥∥µ̂S − Pc(µφθ(T ))
∥∥2
W ∗(5.5)

at significantly reduced cost.
7: Compute gradients of objective (5.5) with respect to parameters θ of diffeomorphism.
8: Update θ, via gradient based optimizer.
9: end while

With this modification, at each iteration we only compute a single orthogonal projection
of the deformed template at cost O(|T |m2), in addition to the metric computation between
compressed measures which is now significantly cheaper at O(mn).

6. Proofs of Main Results. We present in this section the proof of Theorem 5.1. We
begin with a sparse control point approximation of discrete functionals using the Nystrom
approximation in RKHS.

Lemma 6.1. Given vα̂ of the form

vα(x) =
n∑

i=1

k(x, xi)αi, (xi, αi) ∈ X × Rd

m distinct control points c = {c1, . . . , cm} ⊂ {x1, . . . , xn}, and µ > 0, there is a control point
field of the form:

vc,µ =

m∑
i=1

βc,µ
i k(·, ci), βc,µ

i ∈ Rd,

and a constant C1 such that the following holds∥∥∥vα̂ − vc,µ
∥∥∥2
V
≤ C1tr(KXX −QXX), QXX := KXCK

−1
CCKCX .(6.1)

Proof.
The idea is to rewrite each component vα̂j as a solution to a KRR problem of the form 4.1, and
form its Nystrom approximation in the control point subspace.



20 ALLEN PAUL, NEILL CAMPBELL AND TONY SHARDLOW

Recall that given a field of the form vα̂, the j’th component can be written

vα̂j (x) =
n∑

i=1

k(x, xi)α̂ij , α̂j = (α̂1j , . . . , α̂nj), α̂j = K−1
XXyj .

In order to apply Theorem 4.1, we rewrite for arbitrary µ > 0

α̂j = (KXX + µIn)
−1(KXX + µIn)α̂j = (KXX + µIn)

−1
[
(KXX + µIn)K

−1
XXyj

]
,

so that vα̂j is written as a kernel ridge regression solution with data

ỹj = (KXX + µIn)K
−1
XXyj .

One can now form the Nystrom KRR solution approximating vα̂j as:

vc,µj (x) =
m∑
i=1

βijk(x, ci), βj = (KCXKXC + µKCC)
−1KCX ỹj ,

which gives the resulting trace bound by Theorem 4.1∥∥∥vα̂j − vc,µj

∥∥∥2
Vk

≤ 2tr(KXX −QXX) ∥ỹj∥2

µ2
.(6.2)

By applying this bound component-wise, and applying the norm splitting lemma A.1, this
gives us the existence of a function of the form

vc,µ(x) =
m∑
i=1

βik(x, ci), βi = (βi1, . . . , βid), vc,µ = (vc,µ1 , . . . , vc,µd ),

such that

∥vα − vc,µ∥2V =
d∑

l=1

∥∥∥vα̂l − vc,µl

∥∥∥2
Vk

≤ Ctr(KXX −QXX), C =
2d

µ2
∥ỹ∥2 ,

so the error is controlled by trace error of the Nystrom approximation.

Applying the isometric duality mapping and the above result, this gives the following corollary

Corollary 6.2. Suppose we have a discrete functional of the form

n∑
i=1

δxiαi ∈ V ∗, (xi, αi) ∈ X × Rd,

which we wish to compress. There exists a discrete functional of the form

m∑
i=1

δciα
c,µ
i ∈ V ∗,

with m≪ n, such that the following bounds hold:∥∥∥∥∥
n∑

i=1

δxiα̂i −
m∑
i=1

δciα
c,µ
i

∥∥∥∥∥
2

V ∗

≤ Ctr(KXX −QXX).
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Proof. By the isometric property of the duality mapping L, we have

∥vα − vc,µ∥2V = ∥L(vα − vc,µ)∥2V ∗ = ∥L(vα)− L(vc,µ)∥2V ∗

=

∥∥∥∥∥L(
n∑

i=1

k(x, xi)αi)− L(

m∑
i=1

αc,µ
i k(·, ci))

∥∥∥∥∥
2

V ∗

=

∥∥∥∥∥
n∑

i=1

L(k(x, xi)αi)−
m∑
i=1

L(αc,µ
i k(·, ci))

∥∥∥∥∥
2

V ∗

=

∥∥∥∥∥
n∑

i=1

δxiα̂i −
m∑
i=1

δciα
c,µ
i

∥∥∥∥∥
2

V ∗

.

Applying Lemma 6.1, yields∥∥∥∥∥
n∑

i=1

δxiα̂i −
m∑
i=1

δciα
c,µ
i

∥∥∥∥∥
2

V ∗

≤ Ctr(KXX −QXX).

So far, we have approximated a given discrete input functional sparsely, based on a subset of
control points chosen from the original basis. We have shown the error of this approximation
is bounded by the trace error of the Nystrom approximation to the kernel matrix K, based
on the chosen control points. Of course the goodness of this approximation is dependent on
a good choice of control point locations. The following corollary shows, that it suffices to
randomly sample control points from a data dependent input distribution, in order to give
strong theoretical error bounds on the approximation procedure.

Corollary 6.3. Suppose we sample control points c = {c1, . . . , cm} from a m-DPP as in
theorem 4.2. Then, the approximation of Corollary 6.2 satisfies the following in-expectation
bound with respect to this distribution:

Ec

∥∥∥∥∥
n∑

i=1

δxiα̂i −
m∑
i=1

δciα
c,µ
i

∥∥∥∥∥
2

V ∗

≤ C(m+ 1)
n∑

i=m+1

λi(KXX),

where λi(KXX) are eigenvalues of the kernel-matrix evaluated on the discrete input points xi.

Proof. Taking expectation with respect to an m-DPP distribution of control points, one
obtains

Ec

∥∥∥∥∥
n∑

i=1

δxiα̂i −
m∑
i=1

δciα
c,µ
i

∥∥∥∥∥
2

V ∗

≤ CEc[tr(KXX −QXX)].

Applying lemma 4.2 yields,

Ec

∥∥∥∥∥
n∑

i=1

δxiα̂i −
m∑
i=1

δciα
c,µ
i

∥∥∥∥∥
2

V ∗

≤ CEc[tr(KXX −QXX)] ≤ C(m+ 1)
n∑

i=m+1

λi(KXX).
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In summary, in order to form this approximation one:
1. First samples control points c = {c1, . . . , cm} from an m-DPP distribution.
2. For each j = 1, . . . , d compute

ỹj = (KXX + µIn)K
−1
XXyj = (KXX + µIn)α̂j ,

and subsequently the weights,

βj = (KCXKXC + µKCC)
−1KCX ỹj , βj ∈ Rm.

3. Form the approximation

m∑
i=1

δciα
c,µ
i ≈

n∑
i=1

δxiα̂i (αc,µ
i )j = βj

i , j = 1, . . . , d.

Computing the weights β for the approximation however can be expensive, as it requires the
one off cost of computation of a large-scale kernel matrix vector product KXX α̂j with cost
O(n2), which is comparable to the original metric computation cost for currents and varifolds.
For compressing currents as a form of pre-processing for down-line tasks such as matching
and computing statistics, this is fine, as one can treat it as a one-off cost, before performing
the task of interest. However, this can be tedious if one wishes to compress many currents or
varifolds, or perform multiple compressions at different scales.

One can make this compression algorithm more practical, while retaining the theoretical
guarantees by using the orthogonal projection onto the random subspace. This will be
significantly cheaper to compute for a given target functional compared to the Nystrom
approximation weights, while still having the same error bound in expectation. One may
further make the approximation cheaper, by using RLS sampling schemes for choosing control
point positions. This is the content of Theorem 5.1 which we now prove.

Proof of Theorem 5.1. We denote by Pc the orthogonal projection into the subspace

M(c) = span{k(·, ci)ej : ej ∈ Rd, i = 1, . . . ,m j = 1, . . . , d},

spanned by the m control points. We denote the orthogonal projection of vα̂ onto M(c) as

Pc(vα̂) = Pc(
n∑

i=1

k(x, xi)αi) =

m∑
i=1

k(x, ci)βi.

By the orthogonal projection conditions applied to the RKHS V , one can show the explicit
relation

β = [β1, . . . , βm]T = K−1
CCYC ,

for the projection weights [20]. Here we recall the notation,

Yc := (vα(c1), . . . , v
α(cm))T ∈ Rm×d,
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a matrix of values, which is the evaluation of the dual vector-valued function on the control
point locations.

Indeed, the orthogonal projection conditions yield

⟨vα̂ − Pc(vα̂), k(·, ck)ej⟩V = 0, k = 1, . . . ,m, j = 1, . . . , d.

Expanding this out gives

⟨
n∑

i=1

k(x, xi)αi −
m∑
i=1

k(x, ci)βi, k(·, ck)ej⟩V =

n∑
i=1

k(ck, xi)α
T
i ej −

m∑
i=1

k(ck, ci)β
T
i ej

= (

n∑
i=1

k(ck, xi)α
T
i )ej − (

m∑
i=1

k(ck, ci)β
T
i )ej

= Y T
k ej − (

m∑
i=1

k(ck, ci)β
T
i )ej = 0,

so that

Ykj = (
m∑
i=1

k(ck, ci)βij) =⇒ YC = KCCβ =⇒ β = K−1
CCYC .

We now prove the DPP sampling bound of Theorem 5.1. Using the optimality of the orthogonal
projection in inner product spaces and theorem 6.1, we have the following bound∥∥∥∥∥

n∑
i=1

k(x, xi)αi −
m∑
i=1

k(x, ci)βi

∥∥∥∥∥
2

V

=

∥∥∥∥∥
n∑

i=1

k(x, xi)αi − Pc(
n∑

i=1

k(x, xi)αi)

∥∥∥∥∥
2

V

≤
∥∥∥vα̂ − vc,µ

∥∥∥2
V
≤ Ctr(KXX −QXX),

and therefore by taking expectations and using Theorem 4.2 gives,

Ec

∥∥∥∥∥
n∑

i=1

k(x, xi)αi −
m∑
i=1

k(x, ci)βi

∥∥∥∥∥
2

V

≤ CEctr(KXX −QXX) ≤ C(m+ 1)

n∑
i=m+1

λi(KXX).

Applying the isometry property of the Riesz map ones again yields,

Ec

∥∥∥∥∥
n∑

i=1

δxiα̂i −
m∑
i=1

δciβi

∥∥∥∥∥
2

V ∗

= Ec

∥∥∥∥∥
n∑

i=1

k(x, xi)αi −
m∑
i=1

k(x, ci)βi

∥∥∥∥∥
2

V

≤ C(m+ 1)

n∑
i=m+1

λi(KXX).

We now prove the RLS sampling bound. For this proof, we note that the following holds
[20] for symmetric positive-definite matrices A ∈ Rn×n:

tr(A) ≤ n ∥A∥2 ,(6.3)

where the norm on the right hand side is the spectral norm.
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Suppose we fix δ ∈ (0, 1
32), S ∈ N and sample m control points c = {c1, . . . , cm} from the

Recursive RLS sampler of [17]. From the proof of Theorem 5.1, we recall that the orthogonal
projection approximation based on given control point set, satisfies∥∥∥∥∥

n∑
i=1

δxiα̂i −
m∑
i=1

δciβi

∥∥∥∥∥
2

V ∗

≤ Ctr(KXX −QXX).

The inequality (6.3) implies that

tr(KXX −QXX) ≤ n ∥KXX −QXX∥2 ,(6.4)

and therefore, ∥∥∥∥∥
n∑

i=1

δxiα̂i −
m∑
i=1

δciβi

∥∥∥∥∥
2

V ∗

≤ Cn ∥KXX −QXX∥2 .

By applying the inequality of (4.5) for Recursive RLS sampling to the right-hand side, we
know with probability 1− 3δ that m < cS log(S/δ) and∥∥∥∥∥

n∑
i=1

δxiα̂i −
m∑
i=1

δciβi

∥∥∥∥∥
2

V ∗

≤ Cn

S

n∑
i=S+1

λi(KXX).

This concludes the proof.

Finally, we give proof of Corollary 5.2 now follows by the eigenvalue bounds presented in
section 4.0.1, and taking expectation/union bounds.

Proof of Corollary 5.2. Both the m-DPP and RLS sampling case, are upper bounded upto
a multiplicative constant, by the term

n∑
i=m+1

λi(KXX),

as a function of m. By the identity (4.2), we have

EX

[ n∑
i=m+1

λi(KXX)

]
≤ n

∞∑
i=m+1

λi.

Markov’s inequality may also be applied to the above to yield probability 1− δ bound of,

n∑
i=m+1

λi(KXX) ≤ n

δ

∞∑
i=m+1

λi.

Taking expectation/union bound of and inserting the above bounds into the m-DPP and RLS
cases of Theorem 5.1 respectively gives the first part of Corollary 5.2.

For the proof of the second part of Corollary 5.2, it is known by lemma 11 of [7], that the
eigenvalue decay of a mixture of Gaussians can be upper bounded by that of a single Gaussian
p with sufficiently large variance. The rate of decay of eigenvalues of Kp for a single Gaussian
p is already known to be (4.3), which yields the desired exponential decays, by inserting the
estimates into the first part of Corollary 5.2.
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7. Numerical Experiments. We now illustrate the performance of our algorithm on com-
pression of real-world shapes taken from modern geometry processing datasets. In particular,
we explore the following main strengths of our algorithm for compression of geometric mea-
sures: Fast compression times, Rapid error decay supported by theoretical bounds, and
applicability to both currents and varifolds. We illustrate both the true error and theoretical
rates when computationally feasible. In all subsequent experiments in this section, we use
the algorithm of [11] for RLS approximation as opposed to the recursive algorithm of [17], for
which we prove the second bound of Theorem 5.1. Both methods yield similiar theoretical
upper bounds on the Nystrom error, with the [17] being tighter. However, despite the tighter
theoretical bounds of [17], in practice the algorithm of [11] gives similiar error decay while
being significantly faster in approximating RLS scores. Therefore, this is our preferred choice
of RLS approximation to use in Algorithm 5.1. We make the code used to generate the results
of this section publicly available 2.

7.1. Error decay. In this section, we study rate of decay of the compression error as a
function of m, the number of samples. We use the following surface data for our experiments
in this section.

(a) Left: Cat (14410 triangles) Middle: Head (31620 triangles) Right: Flamingo (52895 triangles)

The data are centred and scaled, so that the cat surface lies in a box of size 1.3× 3.3× 7.1,
the head surface lies in a box of size 3.8× 5.3× 4.0 and the flamingo surface lies in a box of
size 1.5× 5.3× 3.8.

We run the RLS currents compression algorithm, Algorithm 5.1, on our test surfaces which
are centred and normalized, prior to our experiments. For each test surface, we calculate and
plot the true squared error E = ∥µ− µ̂m∥2W ∗ of the compression using RLS as a function of m,
where mu is the target, and µ̂m denotes an approximation formed with m delta-centres. We
also plot for comparison, the error curve for uniform sampling, where control points are simply
subsampled from the discrete uniform distribution. Finally, the trace bound on the squared
error derived in Corollary 6.2 is also plotted, with rescaled numerically tighter constants. Note
that we do not plot the curves for eigenvalue bounds, due to the prohibitive cost of computing
the eigendecomposition as m→ n.

2https://github.com/allenpaul0/GeometricMeasureCompression

https://github.com/allenpaul0/GeometricMeasureCompression
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For the currents experiments, we choose the Gaussian kernel k(x, y) = exp(−∥x−y∥2
2σ2 ) for Kp,

and set the spatial kernel equal to σ = 0.5 for all three test cases. For the varifolds experiments,

we choose the Gaussian kernel k(x, y) = exp(−∥x−y∥2
2σ2 ) for Kp, and the spherical Gaussian

kernel k(s, r) = exp(− (2−2⟨s,r⟩)
2σ2

s
) for Ks. Here, we choose σs = 0.5 and σp ∈ {0.3, 0.5, 0.25}

respectively, for the cat, head and flamingo test cases.

Figure 2: Numerical curves comparing error decay of RLS compression (black) to theory bound
(red) and uniformly sampled compression (blue), on cat (top), head (middle) and flamingo
(bottom) surfaces. Left: Error curves for currents. Right: Error curves for varifolds.

We observe in all cases, that the decay of error of the compressed approximation is rapid,
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and one can take m ≪ n for a good quality of approximation, across all the example cases.
One also observes, that the trace bounds (in red), have decay rate that generally matches that
of the true squared error. Finally, we observe that RLS sampling consistently outperforms
Uniform sampling in all cases.

We also note that in practice, the RLS sampling tends to produce better quality samples (in
terms of squared error) than uniform sampling. In general, uniform sampling will tend to have
more points sampled in regions which are oversampled to begin with, thus only representing
the underlying surface well only in densely sampled regions. On the other hand, RLS sampling
measures the local ‘importance’ of triangles through the ridge leverage scores and samples
them accordingly. Thus, RLS sampling tends to produce more ‘diverse’ samples [17] and will
produce samples that are well spread out independent of the initial sampling density.

Finally, we note that in many geometry processing applications, one often does not require
an extremely small error in order to perform down-line tasks with the compressed representation.
In many situations, the data itself is often acquired in a noisy way, and can contain many local
variations that are not relevant in describing the global geometry. As such, the above curves
suggest one can practically choose m≪ n and obtain an acceptable error for the tasks which
we perform with the compressions. For example, [12] suggests a heuristic of τ = 5% relative
error cut-off for compression of currents in the orthogonal matching pursuit algorithm.

7.2. Matching quality. We now illustrate the effectiveness of the compressed measures
for nonlinear shape registration in the LDDMM framework. In particular, we demonstrate
that one can obtain comparable quality of registration to the full (uncompressed) matching
problem, when using the compressed representation with m≪ n, even when only 1− 2% of
the underlying triangles are used in the compression. We shall also demonstrate that using
the compressed representation also gives a massive computational savings for the registration
algorithm, in terms of memory and run-time.

We shall compare the quality of the obtained registrations Hausdorff metric, rather than
in the varifolds metric as it is independent of the optimization objective and gives a measure
alignment of both surfaces without correspondence. Recall that the Hausdorff metric between
two sets A,B ⊂ Rd is defined as follows,

dH(A,B); = max

(
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

)
, d(x,A) := inf

a∈A
∥x− a∥2.

Quality of registration is compared by computing the Hausdorff metric between target, and
deformed template.

We demonstrate on two extremely densely sampled shapes, taken from modern geometry
processing datasets. The first, a super high-resolution version of the Stanford bunny with
259, 898 triangles, and the second a high-resolution brain surface taken from the Thingi10K
dataset with 350, 328 triangles. The bunny is centred and scaled to lie in a box of size
4.0× 4.1× 3.4, and the brain surface to a box of size 3.5× 3.5× 3.6.

In both cases, we consider an initial momentum LDDMM matching problem 5.4, using
the varifolds kernel with Gaussian spatial and spherical part with parameters σp, σs > 0
respectively, and a spherical template. We consider varifolds as our choice of discrepancy, as
they often perform better than currents, at matching complex surfaces. For the spatial kernel
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KV parametrizing vector fields in the LDDMM framework, we fix a sum of 4 Gaussian kernels
of decreasing length-scales σi ∈ {1.0, 0.5, 0.2, 0.1}. For the varifolds kernels we choose Kp to be
Gaussian with length-scale σp = 0.2, and Ks to be spherical Gaussian of length-scale σs = 0.3.

With this problem configuration, in both cases we compare the matching quality and
matching time taken for the uncompressed, and compressed matching (using algorithm 5.3)
problems. For all experiments, the diffeomorphism and push-forward are computed via a
forward Euler scheme with 10 time-steps. The kernel and gradient computations for the
diffeomorphisms, are performed using Keops and automatic differentiation. Optimization is
performed via an LBFGS routine, with strong Wolfe line search run for 500 iterations. All
experiments are performed on a Tesla T4 GPU with 16gb of RAM.

Figure 3: Top left: spherical template. Top right: target mesh. Bottom left: Matching with
full metrics taking 1 hour and 41 minutes, and Hausdorff metric error dH = 0.026. Bottom
right: Matching with 97% compression of template and target taking only 14 minutes, and
Hausdorff metric error dH = 0.030.

In the above, we compress the target and template down to 7500 triangles each, which
is a compression ratio of 97%, giving a significant memory saving of the resulting matching
algorithm. We observe in the figure above, that the matching quality is almost identical in dH
between compressed and uncompressed and in some regions better than the full matching. As
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one expects, the compressed matching algorithm yields a significant speedup of 6− 7 times
over the uncompressed version, reducing overall matching time from 5918s to 860s.

In the second example, we consider the analogous matching problem, for a high resolution
brain surface taken from the Thingi10K dataset with 350, 328 triangles. The data and results
are shown below.

Figure 4: Left: an example of LDDMM matching with Varifolds, from spherical template
to brain without compression, taking 1 hour and 49 minutes, and Hausdorff metric error
dH = 0.005. Right: the same example matching but with 99% compression taking only 11
minutes, and Hausdorff metric error dH = 0.007.

Once again, we compress the target and template down to 5000 triangles each, which is
yields a compression ratio of 99%. This yields huge memory savings and almost a factor of 10
times speed-up over the uncompressed matching problem. Indeed, overall matching time is
reduced from 6540s to 660s, on 500 iterations while still maintaining a similiar dH error.

7.3. Compression speed. Finally, we compare the runtime of our compression algorithm,
to existing compression methods for currents [12] and varifolds [16]. We demonstrate in this
section that one can compress currents and varifolds to a fixed size using our algorithm, in a
fraction of the run-time of the existing algorithms, while retaining fast decay of the compression
error in dual metric as a function of m. This makes the RLS compression particularly suited to
real-time/per-iteration compression where one wishes to compress shapes routinely as part of a
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general shape based learning algorithm; e.g. the LDDMM matching framework. Furthermore,
in situation where multiple compressed measures need to be computed, such as group-wise
shape modelling, our algorithm has a distinct advantage due to rapid compression times, and
error decay. All experiments are performed on a Tesla T4 GPU with 16gb of ram.

First we illustrate, how the run-time (in seconds) and compression error of the RLS scheme
compares to the existing state of the art greedy method [12] for currents compression. We
demonstrate this on the cat and head example shapes from section 7.1. For both examples, we
set the spatial kernel Kp to be Gaussian with length-scale σ = 0.5.

Figure 5: Run-time in seconds (left column) and error comparison (right column) of RLS
method vs Greedy method [12] for compression of currents on example surface ‘cat’ (top row)
and ‘head’ (bottom row).

In figure 5, we observe that our proposed compression algorithm is up to 1000× faster than
the existing method for current compression for compressing to a fixed size. The run-time of
[12] grows rapidly as a function of sample size m, whereas our method grows sub-linearly. In
terms of error, we observe that the rate of decay is similarly fast for both methods, although
the greedy method tends to require slightly fewer samples to achieve a similiar error.

Next, we illustrate how the run-time and compression error of the RLS scheme compares
to the existing state [16] of the art for varifolds compression. These comparisons are made on
the bunny and brain examples of section 7.2. We are able to make the comparison here on
much larger examples, as the RLS sampling and varifold quantization [16] both have run-times
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that are much faster than [12] so we are able to generate the following curves in a reasonable
time. For both examples, we set Kp to be the Gaussian kernel with length-scale σ = 0.5, and
Ks to be spherical gaussian with σs = 0.5.

Figure 6: Run-time in seconds (left column) and error comparison (right column) of RLS
method vs optimization method [16] for compression of varifolds, on example surface ‘bunny’
(top row) and ‘brain’ (bottom row).

For varifolds, we observe that the RLS method outperforms the optimization based approach
in run-time, and has similiar rate of decay of the compression error. Indeed, the optimization
based approach while having fast initial decay, can become stuck in local minima as the sample
size increases, while the RLS based approach continues to decrease the error as m increases.
Furthermore, the run-time comparison on both examples demonstrates how the RLS method
tends to be on average 10− 100× faster than the optimization based approach.

8. Conclusion. In this work, we have derived an algorithm for compression of large-scale
currents and varifolds using the Nystrom approximation in Reproducing Kernel Hilbert Spaces,
and approximate Ridge Leverage Score sampling methods. We have derived convergence
bounds and rates of convergence on this compression algorithm, as a function of the chosen
kernels and associated smoothness parameters. The rapidly decaying error bounds, scalability
and fast run-times of the algorithm, make it well-suited to routine use as well as pre-processing
of measure based shape representations. Numerous practical examples highlight the strengths
of this framework, especially in the large-scale setting. We have also demonstrated the benefits
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of our method over existing compression techniques, that rely on greedy iterative schemes and
non-convex optimization procedures both of which become slow in the large-scale setting.

We leave as future work the task of extending/modifying our algorithm to compression of
higher-order geometric measure representations such as normal-cycles [18]; a generalization of
currents, which is provably sensitive to curvature information and boundaries, in discrete and
continuous shapes. Such properties make it an attractive choice of shape metric, especially
for nonlinear shape registration frameworks, such as LDDMM. However, the normal-cycles
representation comes at a significantly increased computational cost, making it unattractive in
large-scale applications. A compression algorithm adapted to the normal-cycle representation
would finally allow the routine use of such higher-order measures, on large-scale geometry
processing applications.



SPARSE NYSTROM APPROXIMATION OF CURRENTS AND VARIFOLDS 33

Appendix A. Appendix.

A.1. Norm Splitting. We now show that computation of the squared V norm for certain
types of vector fields we are interested in, splits into a sum of squared Vk norms over each
dimension.

Lemma A.1. Suppose, that we are given an RKHS of vector fields V induced by a scalar
diagonal reproducing kernel of the form K(x, y) = k(x, y)Id. Given v ∈ V of the form:

v(x) =
n∑

i=1

K(x, xi)αi,

the V norm (induced by K) has the following form:

∥v∥2V =

n∑
i,j=1

αT
j K(xi, xj)αi,(A.1)

which for scalar diagonal kernels reduces to,

∥v∥2V =

d∑
l=1

∥vl∥2Vk
,(A.2)

where vl denotes the dimension l component of v and Vk is the RKHS of real valued functions
induced by k.

Proof. The identity (A.1) is standard and follows from the following identities in RKHS

∥v∥2V = (Lv, v)

L(K(·, x)α) = αT δx.

For the second claim, it is an easy computation that

∥v∥2V =
n∑

i,j=1

k(xi, xj)α
T
j αi =

n∑
i,j=1

k(xi, xj)
d∑

l=1

αjlαil =
n∑

i,j=1

d∑
l=1

k(xi, xj)αjlαil

=
d∑

l=1

n∑
i,j=1

k(xi, xj)αjlαil =
d∑

l=1

∥vl∥2Vk
,

where vl denotes the dimension l component of v so that

vl =

n∑
i=1

k(·, xi)αil,

with weights αl = (αil)
n
i=1.
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A.2. MCMC k-DPP. The most popular way to sample cheaply from a k-dPP is to run an
MCMC chain that converges to the target k-DPP. There is a large literature on deriving fast
mixing MCMC algorithms for k-DPP sampling. We give one example here from [1]

Algorithm A.1 MCMC for sampling a k-DPP

1: Initialise number of points m, kernel function k, number of MCMC chain iterations R to
sample from X = {x1, . . . , xn}, and uniformly sample an index set S0 of size m.

2: while r < R do
3: Sample i uniformly from Sr and j uniformly from X−Sr. Define the set T = (S− i)∪j.
4: Compute transition probabilities pij =

1
2 min 1, det(KT )/ det(KSr) .

5: Sample from the transition probability so that with probability pij we have Sr+1 = T ,
otherwise Sr+1 = S.

6: end while
7: Return sample from k-DPP SR

Using a smart way to compute the inner loop, one can show the per-iteration cost is O(m2).
This chain is observed to converge to the target m-DPP much faster in practice than the
theoretical bounds, as evidenced in [1]. Furthermore, one obtains the theoretical guarantees of
sections 6, asymptotically as the chain converges.
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