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Abstract. The shape of an object is an important characteristic for many vision
problems such as segmentation, detection and tracking. Being independent of ap-
pearance, it is possible to generalize to a large range of objects from only small
amounts of data. However, shapes represented as silhouette images are challeng-
ing to model due to complicated likelihood functions leading to intractable pos-
teriors. In this paper we present a generative model of shapes which provides a
low dimensional latent encoding which importantly resides on a smooth manifold
with respect to the silhouette images. The proposed model propagates uncertainty
in a principled manner allowing it to learn from small amounts of data and pro-
viding predictions with associated uncertainty. We provide experiments that show
how our proposed model provides favorable quantitative results compared with
the state-of-the-art while simultaneously providing a representation that resides
on a low-dimensional interpretable manifold.

Keywords: Shape Models · Unsupervised Learning · Gaussian Processes · Deep
Belief Networks.

1 Introduction

The space of silhouette images is challenging to work with as it is not smooth in terms
of a representation as pixels. A transformation that we would consider semantically
smooth might correspond to a drastic change in pixel values. Our goal is to learn a
smooth low dimensional representation of silhouette images such that images can be
generated in a natural manner. Further, as data is at a premium, we want to learn a fully
probabilistic model that allows us to propagate uncertainty throughout the generative
process. This will allow us to learn from smaller amounts of data and also associate a
quantified uncertainty to its predictions. This uncertainty allows the model to be used
as a building block in larger models.

The results of our model challenge the current trend in unsupervised learning to-
wards maximum likelihood training of increasingly large parametric models with in-
creasingly large datasets. We demonstrate that by propagating uncertainty throughout
the model, our approach outperforms two standard generative deep learning models,
a Variational Auto-Encoder (VAE [15]) and a Generative Adversarial Network (Info-
GAN [5]) with comparable architectures and can achieve similar performance with far
smaller training datasets.
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In our work we revisit a few classic machine learning models with complementary
properties. On the one hand, parametric models such as Restricted Boltzmann Machines
(RBMs) [25] are particularly interesting as they are stochastic, generative and can be
stacked easily into deeper models such as deep belief networks (DBNs); these can be
trained in a greedy fashion, layer by layer [13]. RBMs can approximate a probability
distribution on visible units. DBNs, in addition, learn deep representations by compos-
ing features learned by the lower layers, yielding progressively more abstract and flex-
ible representations at higher layers and often leading to more expressive and efficient
models compared to shallow ones [2].

However, DBNs suffer from a number of limitations. Firstly, they do not guarantee
a smooth representation in the learned latent space. Secondly, the classic contrastive
divergence algorithm used for greedy training is slow and can place limitations on ar-
chitectures. Finally, a DBN does not provide any explicit generative process from a
manifold, as the standard way to sample from a DBN is to start from a training example
and perform iterations of Gibbs sampling.

The Gaussian Process Latent Variable Model (GPLVM) [17] combines a Gaussian
process (GP) prior with a likelihood function in order to learn a representation. By
specifying a prior that encourages smooth functions a smooth latent representation can
be recovered. However, to make inference tractable the likelihood is also chosen to be
Gaussian which does not reflect the statistics of natural images. Further, even though
the mapping from the latent space is non-linear the posterior is linear in the observed
space. This makes the GPLVM unsuitable for modelling images. To circumvent this
one can compose hierarchies of GPs [6], however, these models are inherently difficult
to train.

The characteristics of the DBN and GPLVM can be considered complementary,
where the DBN excels the GPLVM fails and vice versa. Unfortunately, combining the
two models into a single one by simply stacking a GPLVM on top of a DBN would not
preserve uncertainty propagation. Furthermore, this would pose a challenge to train-
ing (while the GPLVM is a non-parametric model trained by optimizing an objective
function, a DBN is a parametric model, with non-differentiable Bernoulli units, and is
trained with contrastive divergence). Another important challenge is learning from very
little data. The ability to learn from a small dataset expands the applicability of a model
to domains where there is a lack of available data or where collection of data is costly
or time-consuming.

In this paper we address these challenges and present the following contributions:

1. A model (which we call GPDBN) that combines the properties of a smooth, in-
terpretable manifold for synthesis with a data specific likelihood function (a deep
structure) capable of decomposing images into an efficient representation while
propagating uncertainty throughout the model in a principled manner.

2. We train the model end to end using back propagation with the same complexity as
a standard feed-forward neural network by minimising a single objective function.

3. We also show that the model is able to learn from very little data, outperform-
ing current generative deep learning models, as well as scaling linearly to larger
datasets by the use of mini-batching.
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Non-Gaussian Likelihood Explicit Smooth Low-Dim Manifold Fully Generative Propagates Uncertainty

GPLVM [17] X X X

GPLVMDT [22] X X X

DBN [13] X X

SBM [10] X X

VAE [15] X ∼ X

InfoGAN [5] X ∼ X

ShapeOdds [8] X X X

This work X X X X

Table 1. Summary of properties of related models.

2 Related Work

Modelling of shape is important for many computer vision tasks. It is beyond the scope
of this paper to make a complete review of the topic, we refer the reader to the com-
prehensive work of Taylor et al. [7]. In our work we focus on recent unsupervised sta-
tistical models that operate directly on the pixel domain. Interest in these models was
revived by the Shape Boltzmann Machine (SBM) work of Eslami et al. [10] and they
have been shown to be useful for a variety of vision applications [9, 16, 28]. These deep
models can also be readily extended into the 3D domain, e.g., by recent work on 3D
ShapeNets [31]. Detailed analysis of the DBN, GPLVM and SBM is provided in § 3.

Desirable Properties Table 1 highlights the desirable properties of the most closely
related previous works. We have identified four advantageous properties: (i) It is well
known that pixel silhouettes are not well modelled by a Gaussian likelihood. (ii) The
utility of an unsupervised shape model is well described by the properties of its latent
representation. Ensuring a smooth manifold opens up a number of applications to data
in the pixel domain that previously required custom representations, e.g., interactive
drawing [29]. (iii) A fully generative model ensures that there is a well defined space
that can be sampled as well as interpreted; e.g., dynamics models can be defined in such
a space to perform tracking [20, 22]. (iv) Correctly propagating uncertainty is vital to
perform data efficient learning, for example when data is scarce or expensive to obtain.

Auto-Encoders The VAE model by Kingma and Welling [15] performs a variational
approximation of a generative model with a non-Gaussian likelihood through a feed-
forward or Multi-Layer Perceptron (MLP) network. In addition, it uses MLP networks
to encode the variational parameters (in a similar manner to [18]). While this model
provides a generative mapping, the feed-forward (decoder) network fails to propagate
uncertainty from the latent space. Furthermore, the independent prior on the latent space
does not promote a smooth manifold; any smoothness arises as a by-product of the
MLP encoding network. This characteristic depends on the MLP architecture and is not
directly parametrised. The key limitation of the VAE for our purposes is the lack of
uncertainty propagation that results in poor results with limited training data.

The guided, non-parametric autoencoder model of Snoek et al. [26] appears simi-
lar, however, there are a number of important differences. They use label information
(supervision) to guide a latent space learning process for an autoencoder; this is not a
pure unsupervised learning task and we do not have label information available to us.



4 A. Di Martino et al.

Furthermore, as with the VAE, uncertainty is not propagated from the latent manifold
to the output space due to the use of the feed-forward network to the output.

InfoGAN Another prominent generative model in unsupervised learning is the Gen-
erative Adversarial Network (GAN) [11]. The model learns an implicit generator dis-
tribution using a minimax game between a deep generator network, which transforms
a noise variable to a sample, and a deep discriminator network, which is used to clas-
sify between samples from the generator distribution and the true data distribution. One
issue common with GAN models is that they do not provide a smooth latent manifold
for synthesis nor uncertainty in their estimates (like the VAE). From the plethora of
different variations of GANs models available in the literature we have chosen to in-
clude in our comparisons the InfoGAN model [5], since it also considers the goal of
interpretable latent representations (by maximising the mutual information between a
subset of GAN’s noise variables and observations).

ShapeOdds The recent ShapeOdds work of Elhabian and Whitaker [8] confers state-
of-the-art performance and captures many of the desired properties including a gen-
erative probabilistic model that propagates uncertainty. The approach taken is quite
different to ours as they specify a detailed probabilistic model including a Gaussian
Markov Random Field (MRF) with individual Bernoulli random variables for the pixel
lattice. In contrast, our model is more flexible, we allow the network to learn the struc-
ture from the data directly but ensure that we still maintain uncertainty quantification
throughout. We would also argue that the specific form of the low dimensional mani-
fold we generate is desirable with its guaranteed smoothness that makes the latent space
readily interpretable. This provides the tradeoff between the two models. We expect the
ShapeOdds model to perform very well at generalisation due to the inclusion of the
MRF prior. In contrast, our model will be more data dependent in this respect (weaker
prior assumptions on the nature of images), however, it provides a generative space that
is highly interpretable and easy to work with. We identify that a topic for further work
would be to combine our smooth priors with the likelihood model of ShapeOdds.

GPLVM Representations A possible workaround to the problem of non-Gaussian
likelihoods is to perform a deterministic transformation to a domain where the data is
approximately Gaussian. This has been successful for domains where, for example, the
shape can be represented in a new geometric representation away from pixels, e.g., para-
metric curves [3, 23]. However, this is application dependent and not suitable for arbi-
trary pixel based silhouettes considered here. A common approach that retains the pixel
grid is to transform it into a level-set problem via the distance transform, e.g., [22]. This
can improve results in some settings, however, the uncertainty is not correctly preserved
and therefore not correctly captured in predictions. We denote this model GPLVMDT
in our comparisons.

3 Background

3.1 Deep Belief Networks

RBM The restricted Boltzmann machine (RBM), or Harmonium, [25] is a generative
stochastic neural network that learns a probability distribution over a vector of random
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variables. The RBM is when stacked the basic the basic component of a deep belief
network. The graphical model of the RBM is an undirected bipartite graph, consisting
of a set of visible random variables (or units): v, and a set of hidden units h (Fig. 1(a)).
Typically, all variables are binary (Bernoulli), taking on values from {0, 1}.

The RBM model specifies a probability distribution over both the visible and hidden
variables jointly as

P (v,h) =
1

Z
exp (−E(v,h)) (1)

which defines a Gibbs distribution with energy function

E(v,h) = −v>Wh− b>v − c>h , (2)

whereW , b, c are the parameters of the model:W as a linear weight matrix and (b, c)
are bias vectors for the visible and hidden units respectively. The normalising constant
Z is the, computationally intractable, sum over all possible random vectors v and h.

The bipartite structure of the model (i.e., the graph has no visible-visible or hidden-
hidden connections, as shown in Fig. 1(a)), affords efficient Gibbs sampling from the
visible units given the hidden variables (or vice versa). The conditional distribution of
the hidden units given the visible ones, and vice versa, factorize as each set of variables
are conditionally independent given the other:

P (h |v) =
∏H
j=1 P (hj |v), P (v |h) =

∏V
i=1 P (vi |h) . (3)

Replacing binary units with Gaussian units can be performed by modifying the energy
function [12]. Unfortunately, parameter learning is difficult since direct calculation of
the gradients of the log likelihood w.r.t. the parameters requires the intractable compu-
tation of the normalising constant Z. In current practice, the approximate maximum-
likelihood contrastive divergence algorithm is used [4].

DBN When multiple layers of RBMs are stacked on top of each other they form a deep
belief network (Fig. 1(b)). Hinton et al. [13] demonstrated that a DBN can be trained in
a greedy fashion, layer by layer. Essentially, the samples (activations) from the hidden
units of a trained layer are used as the data to train the next layer in the stack.

Sampling Sampling from an RBM proceeds by conditioning on some input data and
performing a Gibbs sample for the hidden units. Subsequently, a Gibbs sample can be
drawn for the visible units by conditioning the hidden units on this sample. This process
is then repeated for a number of cycles. Since a DBN is a stack of RBMs, this process
has to be repeated for all layers; the output of one layer becomes the input to condition
on for the next layer. In this way, an input data point can be propagated up and down
the network.

Limitations Although a DBN is good at learning low-dimensional stochastic repre-
sentations of high-dimensional data, it has three key drawbacks that we will address by
combining the strengths of the DBN with a flexible non-parametric model in § 4:

1. It lacks a directed generative sampling process from a well defined latent represen-
tation. In order to generate a sample one must condition on some input data and
propagate it through the network back and forth until a sample from the lowest
layer is obtained.
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(a) RBM

(b) DBN (c) SBM (d) Our GPDBN

Fig. 1. Graphical representations of the (a) RBM, (b) DBN and (c) SBM. (d) A graphical represen-
tation of our proposed GPDBN model where X represents the latent variables, H the Gaussian
activations (10), and V the observed (data) space. (The SBM figure is taken from [10].)

2. There is no explicit representation of the uncertainty, instead this only arises im-
plicitly through the propagation of point estimates (samples) at each layer.

3. A side effect of the conditional independence assumption of (3) is that the correla-
tions between the hidden units of the top layer of a DBN are not captured because
each latent dimension is independent. Most importantly, a DBN does not, therefore,
give any guarantee about learning a smooth latent space.

3.2 GPLVM

The Gaussian Process Latent Variable Model (GPLVM) [17] learns a generative rep-
resentation by placing a Gaussian process (GP) prior over the mapping from the latent
to the observed data. This approach has the benefit that it is very easy to ensure a
smooth mapping from the latent representations to the observed data. Further, due to
the principled uncertainty propagation of the GP, all predictions will have an associated
uncertainty.

In specific, each observed datapoint yn, n ∈ [1, N ], is assumed to be generated
by a latent location xn through a mapping f . Due to the marginalising property of a
Gaussian, the predictive posterior over function values f∗ at a test location x∗ can be
reached in closed form as,

p(f∗ | Y ,x∗,X) = N (mGP, σ
2
GP) (4)

mGP = k(x∗,X)[k(X,X)]−1Y (5)

σ2
GP = k(x∗,x∗)− k(x∗,X)[k(X,X)]−1k(X,x∗) , (6)

where k(·, ·) is the covariance function specifying the Gaussian process and X =
[x1, . . . ,xN ]>. We used the common squared exponential kernel

k(x,x′) = α2 exp

(
− 1

2`2
‖x− x′‖2

)
, (7)
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with hyperparameters α2 (signal variance) and ` (lengthscale), to ensure a smooth man-
ifold. Importantly, even though the function f can be non-linear, the relationship be-
tween the predicted mean (5) and the training data Y is linear. Due to this linearity, a
GPLVM is inherently not suitable for modeling image data.

3.3 Shape Boltzmann Machine

The Shape Boltzmann Machine (SBM) [10] is a specific architecture of the Boltzmann
machine. It consists of three layers: a rectangular layer ofN×M visible units v, and two
layers of latent variables: h1 and h2. Each hidden unit in h1 is connected only to one of
the four subsets of visible units of v (Fig. 1(c)). Each subset forms a rectangular patch
and the weights of each patch (except the biases) are shared so that a patch effectively
behaves as a local receptive field. To avoid boundary inconsistencies, the patches are
slightly overlapped (in Fig. 1(c), the overlap has size b). Layer h2 is fully connected to
h1.

While the SBM offers improved generalization over a DBN with the same number
of parameters, the SBM has a fixed structure which is not easily extended to more
layers or patches. In contrast, a DBN, as a stack of simple RBMs, has a more generic
and flexible structure which can be adapted easily and combined with other models.
Furthermore, like the DBN, the SBM lacks of a proper generative process.

4 The GPDBN Model

In our model, we connect a DBN and GPLVM so that the data space of the GPLVM cor-
responds the latent space of the DBN (Fig. 1(d)) to obtain a model that can be optimized
by minimizing a single objective function.

New Concrete Layers The uppermost hidden layer of the DBN has Gaussian units
to interface with the Gaussian likelihood of the GPLVM. In the lower layers, we re-
place the standard binary units with a Concrete distribution [21]. This is a continuous
relaxation to discrete random variables, in our case, to the Bernoulli distribution. This
allows us to draw low bias samples, in an analogous manner to the reparameterization
trick [15], using a function that is differentiable with respect to the model parameters,

Concrete (p, u) = Sigmoid
(
1
λ

(
log p− log(1− p) + log u− log(1− u)

))
, (8)

where p is the parameter of a Bernoulli distribution, λ is a scaling factor, which we fix
to 0.1, and u is a uniform sample from [0, 1].

Learning Given a datasetD = {tn}Nn=1, we train the model end-to-end by minimizing
the following objective function jointly with respect to all the parameters and the matrix
of latent pointsX (omitted from the notation to avoid clutter):

L =
∑N
n=1 (tn log(sn) + (1− tn) log(1− sn))︸ ︷︷ ︸

data term

+ 1
2 Tr

[
K
−1

HH
>
]

︸ ︷︷ ︸
joint term

+D
2 log |K|︸ ︷︷ ︸

complexity
term

+ ||X||2︸ ︷︷ ︸
prior
term

.

(9)
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Here, tn is a training datapoint, sn is a sample from the model,K = k
(
X,X

)
+σ2IN

is the covariance matrix of the latent points and D is the number of Gaussian units in
the uppermost DBN layer (equal to the dimension of the GPLVM output space). We use
a standard Gaussian as the prior on X . The variance of the noise parameter is σ2 and
IN is an N ×N identity matrix.

To join the two models, the N × D matrix of activations H , from the Gaussian
units, is defined as:

H = A+ σGP ⊗ σDBN � E , (10)

whereA = [mGP
1 , . . . ,mGP

N ]> is a matrix in which each row is the mean output of the
Gaussian units corresponding to each input training datapoint. This is combined with
σGP, the N × 1 vector of predictive standard deviations from the GPLVM , and σDBN,
the 1×D vector of standard deviation parameters of the Gaussian units. Note that ⊗ is
an outer product, and � is an element-wise product.

The H matrix represents the observed data for the GPLVM and is updated at each
training iteration by sampling E a different N × D matrix of independent Gaussian
noise, En,d ∼ N (0, 1). This is a second application of the reparameterization trick. At
each iteration, H is always normalized, to match our zero mean GP assumption, by
subtracting its column-wise mean and dividing by σDBN.

Minibatches The objective (9) can be evaluated on an uniformly drawn subset of data
{tb}Bb=1 yielding an estimator for the full objective,

Lbatched ' N
B

∑B
b=1

(
tb log(sb) + (1− tb) log(1− sb)

)
+ N

2BTr
[
K−1B HBH

>
B

]
+ ND

2B log |KB |+ N
B ||XB ||2 , (11)

where HB and KB corresponds to H and K evaluated on the subset XB of X . Us-
ing this estimator the model can be optimised using mini-batching to scale linearly to
larger datasets. We note that the matrix inversion does introduce bias into the estimator;
empirical results suggest this is small and removing it is a topic for future work.

Scaling via Convolutional Architecture When defining the likelihood directly over
the pixels, the fully-connected conditional independence of the RBM layers limits scal-
ability in terms of image size. This can be circumvented by adding convolution and
deconvolution steps to replace the dense matrix product in (2) in the lower layers.

Sampling A sample sn from the model is drawn by first generating a hidden sample
hn from latent point xn:

hn(x) = (mGP
n + σGP

n × εn)� σDBN + hµ , (12)

usingmGP
n and σGP

n as the predictive mean and standard deviation of the GPLVM given
latent point xn. This is combined with a sample εn, a 1×D vector of spherical Gaussian
noise. The term hµ is the mean vector that is subtracted from H in the normalization
step. The sample hn is then propagated down through the DBN, sampling layer-by-
layer, to give an output sample sn.
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Prediction and Projection Since we have a simple sampling process, we can propa-
gate uncertainty for our predictions by taking the empirical mean of a set of J samples
from the model as s∗ = 1

J

∑J
j sj
(
hj(x∗)

)
for the latent location x∗. Since we can ef-

ficiently take gradients through the sampling process, we can project new observations
into the latent space by minimizing the reprojection error w.r.t. the latent locations for
predictions from a set of random starting locations in the manifold.

Interpretation We note that the objective (9) consists of terms in contrast with each
other. The first encodes a data term that ensures the observed data is well represented
by the model. The third provides a complexity term that encourages a simple (low com-
plexity) latent spaceX through the covariance matrixK to prevent overfitting.

The second term “glues” the two models together by ensuring that the covariance
matrix K is a good model of the covariance of the Gaussian units at the top of the
DBN. This in turn, ensures that the DBN learns an appropriate network to give sensible
Gaussian activations rather than the unconstrained binary activations from a normal
DBN. The last term encodes a prior which encourages the latent points to stay close to
the origin.

The applications of the reparamerization trick ensures that efficient, low variance
samples can be taken during training with gradients propagated throughout all parts of
the network. The use of sampling and stochastic networks allows uncertainty to be prop-
agated down through the entire model as well to ensure uncertainty is well quantified
both at training and test time.

5 Experiments

In keeping with previous work, we evaluated our models in terms of four experiments:
(i) Synthesis, that is, generating samples that are plausible. (ii) Representation and Gen-
eralisation, demonstrating the ability to capture the variability of the silhouettes away
from the training data. (iii) Smoothness, evaluating the quality of the learned latent space
through interpolation; smooth trajectories in the latent space should produce smooth
variations in the silhouette space. (iv) Scaling, evaluating how the model performs with
respect to the size of the training dataset.

Our Models In the comparisons, our main model (which we will refer to as GPDBN)
consists of a three-layer DBN plus a GPLVM layer connected as described in § 4. From
the bottom (observed) to the top (hidden) layer the architecture consists of 200 (Con-
crete units), 100 (Concrete) and 50 (Gaussian). The connected GPLVM layer has only
2 latent dimensions for easy visualisation. The model is optimized jointly as described
in § 4. Our second model, GPSBM, is similar to the GPDBN where the three-layer DBN
has been replaced with an SBM architecture of [10] with hidden Concrete units in the
bottom layer and hidden Gaussian units at the top. We implemented all our models in
the TensorFlow [1] framework and trained using the Adam optimizer [14].

Baselines For comparison, we compared our models to size baselines: (i) A vanilla
GPLVM with 2 latent dimensions. (ii) GPLVMDT, a GPLVM operating on a signed
distance function representation in a similar manner to [22]; samples are obtained by
thresholding through the hyperbolic tangent function. (iii) The state-of-the-art ShapeOdds
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model [8]. (iv) A DBN with binary units and the same architecture as our GPDBN.
(v) The SBM [10] model with binary units (trained layer by layer with contrastive di-
vergence like the DBN) with the same architecture as our GPSBM. (vi) The VAE [15]
model with the same architecture as our GPDBN (mirrored for the decoder) and 2 la-
tent dimensions. (vii) An InfoGAN [5] with same architecture as the VAE and GPDBN
(mirrored for the discriminator) and 2 latent dimensions of structured noise.

Datasets In keeping with previous work, we trained the models on the Weizmann horse
dataset [24], which consists of 328 binary silhouettes of horses facing left. The limited
number of training samples and the high variability in the position of heads, tails, and
legs make this dataset difficult. We also trained the models on 300 binary images from
the Caltech101 dataset of motorbikes facing right [19]. All images in both datasets
have been cropped and normalized to 32 × 32 pixels. The test datasets consisted of
the challenging held-out data from [10]; an additional 14 horses and 9 motorbikes not
contained in the training datasets.

Synthesis Fig. 2(a), shows the manifold learned by the GPDBN on the Weizmann horse
dataset. Each blue point on the manifold represents the latent location corresponding
to a training datapoint. The heat map is given by the log predictive variance (6) that
encodes uncertainty in the latent space. The model is more likely to generate valid
shapes from any location in the bright regions (i.e., low variance regions).

Unlike GP based models, a standard DBN (or the SBM) does not learn such a gener-
ative manifold. This implies, first of all, that a DBN does not allow us to sample “from
the top” in a direct manner. Instead we must provide a test image to the visible units
and condition on it before propagating it up and down the network for a few iterations
to obtain a sample. Secondly, like the VAE and InfoGAN, a DBN does not provide
information about how plausible a generated sample is.

A smooth generative manifold, such the one learned by our model in Fig. 2(a) is
informative as it gives us an indication about where to sample from to get plausible
silhouettes. Fig. 2(b) compares silhouettes generated by the models that allow sampling
from the manifold.3 We note that the GPLVM and GPLVMDT produce blurry images
since the shapes present interpolation artifacts from the Gaussian likelihood. In contrast,
the results from both the GPDBN and GPSBM are sharper.

Representation and Generalisation In the recent literature on shape modelling, quan-
titative results are reported in terms of the distance between the test data not seen by
the model and the most likely prediction under the model. For the models that can be
sampled from, this amounts to finding the location on the manifold that most closely
represents the test input (discussed for our model in § 4). For the models that learn an
explicit manifold we find the closest silhouette to a test silhouette t∗ by minimising the
following objective with respect to a latent location x∗ on the manifold:

Lproj(x
∗) = 1

P

∑V
i=1 (t

∗ log(si) + (1− t∗) log(1− si)) + γ × log(σ2(x∗)) , (13)

where we use V samples to evaluate the cross entropy to the test silhouette. The second
term is the log predictive variance of the latent location x∗ (as defined in Eq.(6)), this

3 When we show generated silhouettes from any model, we actually show grayscale images
denoting pixel-wise probabilities of turning white rather than binary samples.



Gaussian Process Deep Belief Networks 11

(a) GPDBN horse manifold.

GPLVM GPLVMDT GPDBN GPSBM

(b) Qualitative comparison of samples.

Fig. 2. (a) Manifold learned by the GPDBN model on the Weizmann horse dataset. Moving over
the manifold changes the pose of the horse with smooth paths in the manifold producing smooth
transitions in silhouette pose. The heat map encodes the predictive variance of the model with
darker regions indicating higher uncertainty and lower confidence in the silhouette estimates.
(b) Qualitative comparison of silhouettes generated from low variance manifold areas by each of
the models (images manually ordered by visual similarity).

unseen 20% s.odds dbn sbm vae infogan gpvlm gplvmdt gpdbn gpsbm

(a) Example results for projection onto manifold (20% noise).

Method SSIM
ShapeOdds 0.43± 0.06
DBN 0.43± 0.10
SBM 0.54± 0.11
VAE 0.36± 0.08
InfoGAN 0.27± 0.06
GPLVM 0.48± 0.07
GPLVMDT 0.54± 0.09

GPDBN 0.54± 0.12
GPSBM 0.59± 0.08

(b) SSIM score (higher is
better).

Fig. 3. Manifold projection from corrupted observations. (a) Test silhouettes (first column) are
corrupted with 20% salt and pepper noise (second column). The remaining columns show esti-
mated silhouettes from each model. (b) Mean and standard deviation of the SSIM score between
silhouettes from each model against the original test data without noise.

encourages the model to generate plausible silhouettes from the manifold. The scaling
factor γ ensures that the two term have approximatively the same scale.

Samples for a DBN (or SBM) are usually generated by conditioning on an observed
sample and propagating it through the network for several cycles, as described in § 3.1,
with Gibbs samples taken after a burn in period. In our experiments, we fixed the condi-



12 A. Di Martino et al.

unseen 60% s.odds dbn sbm vae infogan gpvlm gplvmdt gpdbn gpsbm

(a) Example results for projection onto manifold (60% noise).

Method SSIM
ShapeOdds 0.25± 0.04
DBN 0.27± 0.05
SBM 0.35± 0.05
VAE 0.11± 0.02
InfoGAN 0.18± 0.03
GPLVM 0.44± 0.07
GPLVMDT 0.37± 0.03

GPDBN 0.42± 0.10
GPSBM 0.51± 0.09

(b) SSIM score (higher is
better).

Fig. 4. Manifold projection from corrupted observations. (a) Test silhouettes (first column) are
corrupted with 60% salt and pepper noise (second column). The remaining columns show esti-
mated silhouettes from each model. (b) Mean and standard deviation of the SSIM score between
silhouettes from each model against the original test data without noise.

tioning on the test datapoint and averaged the results of a number of propagated samples
through the model to prevent the sample chain from drifting away from the test data.

Projection under Noise To provide a challenging evaluation, we take unseen test data,
corrupt it with noise and ask each models to find their most likely silhouette. Simply
asking to reconstruct the test data would not be a sufficient evaluation since an identity
mapping would be able to perform this task. Instead, we need the model to demonstrate
that it can reject data that should not be in the trained model (the noise). In Fig. 3(b), we
report the results for our proposed model and the baseline methods. We use the Struc-
tured Similarity (SSIM) [30] metric (range [0,1] with high values better) with a small
window size of 3 to perform quantitative evaluations since it is known to outperform
both cross-entropy and MSE as a perceptual metric. A random sample of corresponding
silhouettes for the horse dataset are provided in Fig. 3(a). We also test our model in a
more challenging environment, Fig. 4, where test data has been corrupted by significant
noise. The quantitative comparisons shown that our GPDBN and GPSBM models have
captured a high quality probabilistic estimate of the data manifold while still preserving
interpretability.

Interpolation Test We trained a GPDBN, VAE and InfoGAN models on a 30 image
dataset (which we call stars dataset) generated from a known 1-dimensional manifold
using a simple script. The full dataset is displayed in the top row of Fig. 5. The de-
terministically generated dataset allows us to determine quantitatively whether interpo-
lations in the latent space are representative of the true data distribution. The middle
rows of Fig. 5 show the model outputs for the interpolation between two latent points
corresponding to a four-pointed star (leftmost sample) and a square (rightmost sam-
ple). The uncertainty information of the GPDBN allows us to go from one point to the
other passing through low-variance regions by following a geodesic [27]. We can see
that the GPDBN produces smoothly varying shapes of high quality that reflect the true
manifold. In contrast, the VAE and InfoGAN results do not smoothly follow the true
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Dataset

GPDBN

VAE

InfoGAN

GPDBN: 0.95± 0.01 VAE: 0.87± 0.03 InfoGAN: 0.93± 0.06

Fig. 5. Example results of the interpolation test between two training points from the stars dataset.
The top row shows the geodesic interpolation generated by the GPDBN. The middle and the last
rows are the linear interpolation generated by the VAE and InfoGAN respectively. The bottom
row provides the mean and standard deviation of the SSIM score over 10 interpolation experi-
ments. (In this picture black and white are inverted respect to the training dataset.)

Fig. 6. Graph showing the SSIM score of the output of the GPDBN, InfoGAN and VAE models
against the test data without noise as the training dataset size increases from 100 to 10000 points.
A higher score is better.

manifold and contain some erroneous interpolants that are not part of the true distribu-
tion; this is supported by the quantitative results that measure the quality of the samples
to the true data using SSIM. The ability to exploit variance information in the GPDBN
is clearly an advantage over the VAE and InfoGAN where the absence of direct access
to the latent predictive posterior distribution prevents easy access to geodesics. Further
demonstrations of the smoothness are available in supplementary material.

Scaling Experiments In Fig. 6 we compare the performance of the GPDBN, InfoGAN
and VAE models as the size of the training dataset increases; here we use the standard
MNIST digit dataset. We used a 10-dimensional latent space for all of the three models
to account for the larger quantity of data. Similarly to the experiments in Figs. 3 and
4, we took 30 random images from the MNIST test data, add 20% salt-and-pepper
noise, and calculated the SSIM score between the output of the models and the test
data without noise. We plotted the score against dataset size (in log scale). We can see
that the GPDBN model is able to capture a high quality model of the data manifold
even from small datasets; for example, it achieves the same quality as a VAE trained on
10,000 images using only 100. We argue that the propagation of uncertainty throughout
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Fig. 7. The model can be made to scale to a large number of datapoints by optimizing the objective
using mini-batching (11). Furthermore, scalability in the size of images can be obtained by adding
upscaling and convolutions in the lowermost layer. Left: GPDBN trained on MNIST comprised
of 60,000 28x28 images. Right: GPDBN trained on Weizmann Horses comprised of 328 300x300
images.

the model provides the advantage over both the VAE and InfoGAN which are both
trained with only maximum likelihood approaches.

In Fig. 7 we provide results that demonstrate that our approach also overcomes
scaling issues normally present in GP models and DBNs. Firstly, we show training on
the 60,000 MNIST images via our proposed mini-batching approach. In addition, we
also show the manifold for higher resolution images from the horse dataset (300 ×
300). By using convolutional architectures, we can scale the number of parameters in
an identical manner to convolutional feed-forward networks and our concrete layers
allow us to train from random weight initialisation using back propagation without the
need to use slow contrastive divergence. With both these approaches we still maintain
our full uncertainty model so the same model can perform well with small and large
datasets.

6 Conclusion

We have presented the GPDBN, a model that combines the properties of a smooth,
interpretable low-dimensional latent representation with a data specific non-Gaussian
likelihood function (for silhouette images). The model fully propagates and captures
uncertainty in its estimates, it is trained end to end with the same complexity as a stan-
dard feed-forward neural network by minimising a single objective function, and is able
to learn from very little data as well as scaling to larger datasets linearly by using mini-
batching. We have shown both quantitatively and qualitatively that our model performs
on par with the best shape models while at the same time introducing a smooth and
low-dimensional latent representation with associated uncertainty that facilitates easy
synthesis of data.
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